Skip to main content
Log in

Antioxidant and Antithrombotic Activities of Kenaf Seed (Hibiscus cannabinus) Coat Ethanol Extract in Sprague Dawley Rats

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat’s model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C–C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography–mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

Abbreviations

ADP:

Adenosine diphosphate

ALP:

Alkaline phosphatase

APTT:

Activated partial thromboplastin time

CAT:

Catalase

DFC:

Diclofenac

DNPH:

Di-Nitro-Phenyl-Hydrazine

DPPH:

Di-Phenyl-2-Picryl-Hdrazyl

ECNICI:

Electron capture negative ion chemical ionization

EDTA:

Ethylene diamine tetraacetic acid

FTIR:

Fourier transform infrared spectrophotometry

GC–MS:

Gas chromatography-mass spectrometry

HPLC:

High-performance liquid chromatography

KSCEE:

Kenaf seed coat ethanol extract

LDH:

Lactate dehydrogenase

LPO:

Lipid per oxidation

MED:

Minimum edema dose

MHD:

Minimum hemorrhagic dose

PCC:

Protein carbonyl content

PDA:

Photometric diode array

PPP:

Platelet-poor plasma

PRP:

Platelet rich plasma

PT:

Prothrombin time

RBC:

Red blood cells

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SGOT:

Serum glutamic oxaloacetic transamylase

SGPT:

Serum glutamate pyruvate transferase

SOD:

Super oxide dismutase

SYL:

Silymarin

References

  1. Carvalho, C., & Moreira, P. I. (2018). Oxidative stress: A major player in cerebrovascular alterations associated to neurodegenerative events. Frontiers in Physiology, 9, 806. https://doi.org/10.3389/fphys.2018.00806

    Article  Google Scholar 

  2. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., & Murray, C. J. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2095–2128. https://doi.org/10.1016/S0140-6736(12)61728-0

    Article  Google Scholar 

  3. Evans, N. S., & Ratchford, E. V. (2014). Vascular disease patient information page: Venous thromboembolism (deep vein thrombosis and pulmonary embolism). Vascular Medicine, 19(2), 148–150. https://doi.org/10.1177/1358863X14529007

    Article  Google Scholar 

  4. Alfhili, M. A., Weidner, D. A., & Lee, M.-H. (2019). Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere, 229, 103–111. https://doi.org/10.1016/j.chemosphere.2019.04.21

    Article  CAS  Google Scholar 

  5. Cosby, K., Partovi, K. S., Crawford, J. H., Patel, R. P., Reiter, C. D., Martyr, S., Yang, B. K., Waclawiw, M. A., Zalos, G., Xu, X., & Huang, K. T. (2003). Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nature Medicine, 9(12), 1498–1505. https://doi.org/10.1038/nm954

    Article  CAS  Google Scholar 

  6. Buerck, J. P., Burke, D. K., Schmidtke, D. W., Snyder, T. A., Papavassiliou, D. V., & O’Rear, E. A. (2021). Production of erythrocyte microparticles in a sub-hemolytic environment. Journal of Artificial Organs, 24(2), 135–145. https://doi.org/10.1007/s10047-020-01231-7

    Article  CAS  Google Scholar 

  7. Qiao, J., Arthur, J. F., Gardiner, E. E., Andrews, R. K., Zeng, L., & Xu, K. (2018). Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biology, 14, 126–130. https://doi.org/10.1016/j.redox.2017.08.021

    Article  CAS  Google Scholar 

  8. Fuentes, E., Gibbins, J. M., Holbrook, L. M., & Palomo, I. (2018). NADPH oxidase 2 (NOX2): A key target of oxidative stress-mediated platelet activation and thrombosis. Trends in Cardiovascular Medicine, 28(7), 429–434. https://doi.org/10.1016/j.tcm.2018.03.001

    Article  CAS  Google Scholar 

  9. Wang, L., Chen, J., Xie, H., Ju, X., & Liu, R. H. (2013). Phytochemical profiles and antioxidant activity of Adlay varieties. Journal of Agricultural and Food Chemistry, 61(21), 5103–5113. https://doi.org/10.1021/jf400556s

    Article  CAS  Google Scholar 

  10. Seca, A. M., Silva, A. M., Silvestre, A. J., Cavaleiro, J. A., Domingues, F. M., & Pascoal-Neto, C. (2000). Chemical composition of the light petroleum extract of Hibiscus cannabinus bark and core. Phytochemical Analysis, 11, 345. https://doi.org/10.1016/s0031-9422(01)00311-9

    Article  CAS  Google Scholar 

  11. Kareru, P., Keriko, J., Gachanja, A., & Kenji, G. (2008). Direct detection of triterpenoid saponins in medicinal plants. African Journal of Traditional, Complementary and Alternative Medicines, 5(1), 56–60. https://doi.org/10.4314/ajtcam.v5i1.31257

    Article  CAS  Google Scholar 

  12. Okoh, S. O., Asekun, O. T., Familoni, O. B., & Afolayan, A. J. (2011). Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida. Natural Product Communications, 6(10), 1934578X1100601. https://doi.org/10.1177/1934578X1100601032

    Article  Google Scholar 

  13. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  14. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., et al. (1951). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464–478. https://doi.org/10.1016/0076-6879(90)86141-H

    Article  Google Scholar 

  15. Sundaram, M. S., Hemshekhar, M., Santhosh, M. S., Paul, M., Sunitha, K., Thushara, R. M., & Girish, K. S. (2015). Tamarind seed (Tamarindus indica) extract ameliorates adjuvant-induced arthritis via regulating the mediators of cartilage/bone degeneration, inflammation and oxidative stress. Scientific Reports, 5(1), 11117. https://doi.org/10.1038/srep11117

    Article  Google Scholar 

  16. Gangaraju, S., Manjappa, B., Subbaiah, G. K., Kempaiah, K., Shashidharamurthy, R., Plow, J. H., & Sannaningaiah, D. (2015). Jackfruit (Artocarpus heterophyllus) seed extract exhibits fibrino (geno)lytic activity. Pharmacognosy Journal, 7(3), 171–177. https://doi.org/10.5530/pj.2015.3.5

    Article  CAS  Google Scholar 

  17. Quick, A. J., Stanley-Brown, M., & Bancroft, F. W. (1935). A study of the coagulation defect in hemophilia and jaundice. The American Journal Of The Medical Sciences, 190(4), 501–510. https://doi.org/10.1097/00000441-193510000-00009

    Article  Google Scholar 

  18. Born, G. V. R. (1962). Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 194, 927–929. https://doi.org/10.1038/194927b0

    Article  CAS  Google Scholar 

  19. Kondo, H., Kondo, S., Ikezawa, H., Murata, R., & Ohsaka, A. (1960). Studies on the quantitative method for determination of the hemorrhagic activity of habu snake venom. Japanese Journal of Medical Science and Biology, 13(1–2), 43–51. https://doi.org/10.7883/yoken1952.13.43

    Article  CAS  Google Scholar 

  20. Vishwanath, S. B., Manjunatha Kini, R., & Veerabasappa Gowda, T. (1987). Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon, 25(5), 501–515. https://doi.org/10.1016/0041-0101(87)90286-8

    Article  CAS  Google Scholar 

  21. Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology, 82, 291–295. https://doi.org/10.1113/expphysiol.1997.sp004024

    Article  CAS  Google Scholar 

  22. Hybertson, B. M., Gao, B., Bose, S. K., & McCord, J. M. (2011). Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine, 32(4–6), 234–246. https://doi.org/10.1016/j.mam.2011.10.006

    Article  CAS  Google Scholar 

  23. Subramanion, L. J., Zakaria, Z., & Sreenivasan, S. (2011). Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitory activities of Cassia fistula seeds extract. Journal of Medicinal Plants Research, 5(10), 1941–1947.

    CAS  Google Scholar 

  24. Dravie, E. E., Kortei, N. K., Essuman, E. K., Tettey, C. O., Boakye, A. A., & Hunkpe, G. (2020). Antioxidant, phytochemical and physicochemical properties of a sesame seed (Sesamum indicum L). Scientific African, 8, e00349. https://doi.org/10.1016/j.sciaf.2020.e00349

    Article  Google Scholar 

  25. Bianchini Silva, L. S., Perasoli, F. B., Carvalho, K. V., Vieira, K. M., Paz Lopes, M. T., Bianco de Souza, G. H., Henrique Dos Santos, O. D., & Freitas, K. M. (2020). Melaleuca leucadendron (L.) L. flower extract exhibits antioxidant and photoprotective activities in human keratinocytes exposed to ultraviolet B radiation. Free Radical Biology and Medicine, 159, 54–65. https://doi.org/10.1016/j.freeradbiomed.2020.07.022

    Article  CAS  Google Scholar 

  26. Jimoh, M. A., Idris, O. A., & Jimoh, M. O. (2020). Cytotoxicity, Phytochemical, Antiparasitic Screening, and Antioxidant Activities of Mucuna pruriens (Fabaceae). Plants, 9(9), 1249. https://doi.org/10.3390/plants9091249

    Article  CAS  Google Scholar 

  27. Hayes, J. E., Allen, P., Brunton, N., O’Grady, M. N., & Kerry, J. P. (2011). Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chemistry126(3), 948–955. https://doi.org/10.1016/j.foodchem.2010.11.092.

  28. Salahuddin, M. A. H., Ismail, A., Kassim, N. K., Hamid, M., & Ali, M. S. M. (2020). Phenolic profiling and evaluation of in vitro antioxidant, α-glucosidase and α-amylase inhibitory activities of Lepisanthes fruticosa (Roxb) Leenh fruit extracts. Food Chemistry, 331, 127240. https://doi.org/10.1016/j.foodchem.2020.127

    Article  CAS  Google Scholar 

  29. Kawamoto, E. M., Munhoz, C. D., Glezer, I., Bahia, V. S., Caramelli, P., Nitrini, R., & Marcourakis, T. (2005). Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiology of Aging, 26(6), 857–864. https://doi.org/10.1016/j.neurobiolaging.2004.08.011

    Article  CAS  Google Scholar 

  30. Chandramma, S., Kengaiah, J., Nandish, S. K. M., Ramachandraiah, C., Hanumegowda, S. M., Shivaiah, A., Santhosh, S., & Sannaningaiah, D. (2020). Caesalpinia crista coat extract protects red blood cells from sodium nitrite-induced oxidative stress and exhibits antiplatelet activity. Blood Coagulation & Fibrinolysis, 31, 293–302. https://doi.org/10.1097/MBC.0000000000000913

    Article  CAS  Google Scholar 

  31. Girish, T. K., Vasudevaraju, P., & Prasada Rao, U. J. S. (2012). Protection of DNA and erythrocytes from free radical induced oxidative damage by black gram (Vigna mungo L.) husk extract. Food and Chemical Toxicology, 50(5), 1690–1696. https://doi.org/10.1016/j.fct.2012.01.043

    Article  CAS  Google Scholar 

  32. Thushara, R. M., Hemshekhar, M., Paul, M., Shanmuga Sundaram, M., Shankar, R. L., Kemparaju, K., & Girish, K. S. (2014). Crocin prevents sesamol-induced oxidative stress and apoptosis in human platelets. Journal of Thrombosis and Thrombolysis, 38(3), 321–330. https://doi.org/10.1007/s11239-014-1056-7

    Article  CAS  Google Scholar 

  33. Ashwini, S., Chandramma, S., Sujatha, M.H., Jayanna, K., Sharath Kumar, M.N., Ramachandraiah, C., Hanumegowda, S.M., Santhosh S, Sannaningaiah D. (2020). Protein extract of Pennisetum glaucum (Pearl millet) protects RBC, liver, kidney, and small intestine from oxidative stress and exhibits anticoagulant, and antiplatelet activity. J Am Coll Nutr, 1541–1087.

  34. Liu, L., Gao, Q., Zhang, Z., & Zhang, X. (2022). Elsholtzia rugulosa: Phytochemical profile and antioxidant, anti-Alzheimer’s disease, antidiabetic, antibacterial, cytotoxic and hepatoprotective activities. Plant Foods for Human Nutrition, 77(1), 62–67. https://doi.org/10.1007/s11130-021-00941-4

    Article  CAS  Google Scholar 

  35. Sinha, M., Manna, P., & Sil, P. C. (2007). Aqueous extract of the bark of Terminalia arjuna plays a protective role against sodium-fluoride-induced hepatic and renal oxidative stress. Journal of Natural Medicines, 61(3), 251–260. https://doi.org/10.1007/s11418-007-0133-z

    Article  Google Scholar 

  36. Korish, A. A. (2010). Effect of caffeic acid phenethyl ester on the hemostatic alterations associated with toxin-induced acute liver failure. Blood Coagulation & Fibrinolysis, 21(2), 158–163. https://doi.org/10.1097/MBC.0b013e32833678be

    Article  CAS  Google Scholar 

  37. Jerine, S. P., Parthasarathy, M., Nithyanandham, S., Katturaja, R., Namachivayam, A., & Prince, S. E. (2019). Protective effect of the ethanolic and methanolic leaf extracts of Madhuca longifolia against diclofenac-induced toxicity in female Wistar albino rats. Pharmacological Reports, 71(6), 983–993. https://doi.org/10.1016/j.pharep.2019.05.013

    Article  CAS  Google Scholar 

  38. Hasan, M. M., Tasmin, M. S., El-Shehawi, A. M., Elseehy, M. M., Reza, M. A., & Haque, A. (2021). R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complementary Medicine and Therapies, 21(1), 225. https://doi.org/10.1186/s12906-021-03398-9

    Article  CAS  Google Scholar 

  39. Xue, W., Lei, J., Li, X., & Zhang, R. (2011). Trigonella foenum graecum seed extract protects kidney function and morphology in diabetic rats via its antioxidant activity. Nutrition Research, 31(7), 555–562. https://doi.org/10.1016/j.nutres.2011.05.010

    Article  CAS  Google Scholar 

  40. Akacha, A., Rebai, T., Zourgui, L., & Amri, M. (2018). Preventive effect of ethanolic extract of cactus (Opuntia ficus-indica) cladodes on methotrexate-induced oxidative damage of the small intestine in Wistar rats. Journal of Cancer Research and Therapeutics, 14(10), 779.

    Article  Google Scholar 

  41. Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., & Zhao, H. (2019). A statistical framework for cross-tissue transcriptome-wide association analysis. Nature Genetics, 51(3), 568–576. https://doi.org/10.1038/s41588-019-0345-7

    Article  CAS  Google Scholar 

  42. Ganesan, P., Matsubara, K., Ohkubo, T., Tanaka, Y., Noda, K., Sugawara, T., & Hirata, T. (2010). Anti-angiogenic effect of siphonaxanthin from the green alga Codium fragile. Phytomedicine, 17(14), 1140–1144. https://doi.org/10.1016/j.phymed.2010.05.005

    Article  CAS  Google Scholar 

  43. Azam, G., Jayanna, S. G., Nelliankla, A., Boraiah, V., Hanumegowda, S. M., Sannaningaiah, D., Vijendra, P. D., Kumar, V., & Mahmood, R. (2021). Evaluation of in vitro antioxidant, anti-inflammatory, anticoagulant and antiplatelet potential of Rhus mysorensis. Biomedicine, 41(4), 724–731. https://doi.org/10.51248/.v41i4.1365

    Article  Google Scholar 

  44. Lamponi, S., Baratto, M. C., Miraldi, E., Baini, G., & Biagi, M. (2021). Chemical profile, antioxidant, anti-proliferative, anticoagulant and mutagenic effects of a hydroalcoholic extract of Tuscan Rosmarinus officinalis. Plants, 10(1), 97. https://doi.org/10.3390/plants10010097

    Article  CAS  Google Scholar 

  45. Hanumegowda, S., Srinivasa, C., Shivaiah, A., Venkatappa, M., Hanumanthappa, R., Rangappa, R., Sannaningaiah, D., et al. (2022). Protein extract of kenaf seed exhibits anticoagulant, antiplatelet and antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 12(2), 47. https://doi.org/10.4103/2221-1691.335693

    Article  CAS  Google Scholar 

  46. Anastasiou, G., Gialeraki, A., Merkouri, E., Politou, M., & Travlou, A. (2012). Thrombomodulin as a regulator of the anticoagulant pathway: Implication in the development of thrombosis. Blood Coagulation & Fibrinolysis, 23(1), 1–10. https://doi.org/10.1097/MBC.0b013e32834cb271

    Article  CAS  Google Scholar 

  47. Ardlie, N. G., & Han, P. (1974). Enzymatic basis for platelet aggregation and release: The significance of the ‘platelet atmosphere’ and the relationship between platelet function and blood coagulation. British journal of hematology, 26, 331–356.

    Article  CAS  Google Scholar 

  48. Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133–140. https://doi.org/10.1016/S0021-9258(19)50881-X

    Article  CAS  Google Scholar 

  49. Bergendi, L., Beneš, L., Ďuračková, Z., & Ferenčik, M. (1999). Chemistry, physiology and pathology of free radicals. Life Sciences, 65, 1865–1874. https://doi.org/10.1016/S0024-3205(99)00439-7

    Article  CAS  Google Scholar 

  50. Davidović-Plavšić, B., Kukavica, B., Škondrić, S., Jimenez-Gallardo, C., & Žabić, M. (2021). Wild garlic extract reduces lipid peroxidation in terbuthylazine-treated human erythrocytes. Biomarkers, 26(7), 617–624. https://doi.org/10.1080/1354750X.2021.1953598

    Article  Google Scholar 

  51. Denis, C., Methia, N., Frenette, P. S., et al. (1998). A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. PNAS, 95, 9524–9529. https://doi.org/10.1073/pnas.95.16.9524

    Article  CAS  Google Scholar 

  52. Edziri, H., Jaziri, R., Haddad, O., Anthonissen, R., Aouni, M., Mastouri, M., & Verschaeve, L. (2019). Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L. South African Journal of Botany, 126, 170–175. https://doi.org/10.1016/j.sajb.2019.01.017

    Article  CAS  Google Scholar 

  53. Elshopakey, G. E., & Elazab, S. T. (2021). Cinnamon aqueous extract attenuates diclofenac sodium and oxytetracycline mediated hepato-renal toxicity and modulates oxidative stress, cell apoptosis, and inflammation in male albino rats. Veterinary Sciences, 8(1), 9. https://doi.org/10.3390/vetsci8010009

    Article  Google Scholar 

  54. Harborne, J. B. (1980). Phytochemical methods. Springer.

    Book  Google Scholar 

  55. Iloki-Assanga, S. B., Lewis-Luján, L. M., Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L., & Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Research Notes, 8(1), 396. https://doi.org/10.1186/s13104-015-1388-1

    Article  CAS  Google Scholar 

  56. Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1–2), 101–110. https://doi.org/10.1016/S0021-9673(97)01061-3

    Article  CAS  Google Scholar 

  57. Kauffman, D. (2020). Cardiovascular disease burden, deaths are rising around the world. American College of Cardiology, 9.

  58. Kiefmann, R., Rifkind, J. M., Nagababu, E., & Bhattacharya, J. (2008). Red blood cells induce hypoxic lung inflammation. Blood, The Journal of the American Society of Hematology, 111(10), 5205–5214.

    CAS  Google Scholar 

  59. Kengaiah, J., Nandish, S. K. M., Ramachandraiah, C., Srinivasa, C., Shivaiah, A., & Sannaningaiah, D. (2019). In-vitro and in-vivo studies of Tamarind seed edible extract reveals anti-oxidative, anticoagulant, antiplatelet events. Asian Journal of Pharmacy and Pharmacology, 5(6), 1104–1116. https://doi.org/10.31024/ajpp.2019.5.6.5

    Article  CAS  Google Scholar 

  60. Kim, K., Li, J., Tseng, A., Andrews, R. K., & Cho, J. (2015). NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood, 126(16), 1952–1964. https://doi.org/10.1182/blood-2014-10-605261

    Article  CAS  Google Scholar 

  61. Lakshmi, T., Ramasamy, R., & Thirumalaikumaran, R. (2015). Preliminary phytochemical analysis and in vitro antioxidant, FTIR spectroscopy, anti-diabetic activity of Acacia catechu ethanolic seed extract. Pharmacognosy Journal, 7(6), 356–362. https://doi.org/10.5530/pj.2015.6.7

    Article  CAS  Google Scholar 

  62. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89.

    CAS  Google Scholar 

  63. Luqman, S., & Rizvi, S. I. (2006). Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(4), 303–306.

    Article  CAS  Google Scholar 

  64. Madamanchi, N. R., Hakim, Z. S., & Runge, M. S. (2005). Oxidative stress in atherogenesis and arterial thrombosis: The disconnect between cellular studies and clinical outcomes. Journal of Thrombosis and Haemostasis, 3(2), 254–267. https://doi.org/10.1111/j.1538-7836.2004.01085.x

    Article  CAS  Google Scholar 

  65. Medini, H., Marzouki, H., Chemli, R., Khouja, M. L., Marongiu, B., Piras, A., & Tuveri, E. (2009). Comparison of the antimicrobial activity and the essential oil composition of Juniperus oxycedrus subsp macrocarpa and J oxycedrus subsp rufescens obtained by hydrodistillation and supercritical carbon dioxide extraction methods. Chemistry of Natural Compounds, 45(5), 739–741.

    Article  CAS  Google Scholar 

  66. Mohamed, A., Bhardwaj, H., Hamama, A., & Webber, C. (1995). Chemical composition of kenaf (Hibiscus cannabinus L) seed oil. Industrial Crops and Products, 4(3), 157–165. https://doi.org/10.1016/0926-6690(95)00027-A

    Article  CAS  Google Scholar 

  67. Nandish, S. M., Kengaiah, J., Ramachandraiah, C., Shivaiah, A., Chandramma, Girish, K., Kemparaju, K., & Sannaningaiah, D. (2018). Anticoagulant, antiplatelet and fibrin clot hydrolyzing activities of flax seed buffer extract. Pharmacognosy Magazine, 14(55), 175. https://doi.org/10.4103/pm.pm_320_17

    Article  CAS  Google Scholar 

  68. Nerdy, N., & Ritarwan, K. (2019). Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora Sp) in the albino rat. Open Access Macedonian Journal of Medical Sciences, 7(4), 536–542. https://doi.org/10.3889/oamjms.2019.153

    Article  Google Scholar 

  69. Prandoni, P. (2016). Venous and arterial thrombosis: Is there a link? In Md. S. Islam (Ed.), Thrombosis and embolism: From research to clinical practice (Vol. 906, pp. 273–283). Cham: Springer International Publishing. https://doi.org/10.1007/5584_2016_121

  70. Sannaningaiah, D., Shivaiah, A., Kengaiah, J., Srinivasa, C., Nandish, S. K. M., Ramachandraiah, C., Hanumegowda, S., & Shinde, M. (2021). Sorghum protein extract protects RBC from sodium nitrite-induced oxidative stress and exhibits anticoagulant and antiplatelet activity. Folia Medica, 63(6), 884–894. https://doi.org/10.3897/folmed.63.e57713

    Article  CAS  Google Scholar 

  71. Singh, R., Devi, S., & Gollen, R. (2015). Role of free radicals in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life: Role of free radicals in atherosclerosis, diabetes and dyslipidaemia. Diabetes/Metabolism Research and Reviews, 31(2), 113–126. https://doi.org/10.1002/dmrr.2558

    Article  CAS  Google Scholar 

  72. Simon, J. P., & Evan Prince, S. (2018). Aqueous leaves extract of Madhuca longifolia attenuate diclofenac-induced hepatotoxicity: Impact on oxidative stress, inflammation, and cytokines. Journal of Cellular Biochemistry, 119(7), 6125–6135. https://doi.org/10.1002/jcb.26812

    Article  CAS  Google Scholar 

  73. Veenith, T., Martin, H., Le Breuilly, M., Whitehouse, T., Gao-Smith, F., Duggal, N., & Moss, P. (2022). High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Scientific Reports, 12(1), 10484. https://doi.org/10.1038/s41598-022-13825-7

    Article  CAS  Google Scholar 

  74. Vilesgonzalez, J. (2004). Atherothrombosis: A widespread disease with unpredictable and life-threatening consequences*1. European Heart Journal, 25(14), 1197–1207. https://doi.org/10.1016/j.ehj.2004.03.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Vision Group of Science and Technology, Government of Karnataka, India, for financial support and Liveon Biolabs Private Limited, Tumkur, Karnataka, India, for extending animal studies. The authors also thank the Department of Science and Technology (DST), Govt. of India, for providing the instrumentation facility under the scheme ‘Fund for Improvement of Science and Technology’ (Grant No. FIST-No. SR/FST/LS1/2018/175(C)) to the Department of Biochemistry, Kuvempu University Shankaraghatta, Karnataka, to achieve this piece of work and for awarding inspire fellowship to carry out the Ph.D. degree of the candidate.

Funding

This work is supported by Vision Group of Science and Technology, Government of Karnataka, India (VGST/CISEE/2012–13/282, dated March 16th, 2013). DST, New Delhi 2018/IF_180400.

Author information

Authors and Affiliations

Authors

Contributions

SH and DS together planned and designed the research work. CR, AS, and MV assisted in the laboratory work. SSM, RR, and SG reviewed the article.

Corresponding authors

Correspondence to Sathisha J. Gonchigar or Devaraja Sannaningaiah.

Ethics declarations

Ethics Approval

The research work involving only Sprague Dawley Female rats weighing 150–180 g was procured from Liveon Biolabs, limited. Institutional Animal ethical committee (TUMKUR, INDIA). All the experimentations were conducted under ethical guidelines and were approved by the Institutional Human Ethical Committee, Tumkur University, and Tumkur. Conducting animal experiments was permitted by the Institutional Animal Ethical Committee, Liveon Biolabs Private Limited, Tumkur. The animal handling was preceded following the guidelines of the Committee for Monitoring and Supervision of Experiments on Animals (CPCSEA). Ethical clearance was taken for this study from Liveon Biolabs, limited. Institutional Animal ethical committee (LBLIAEC) TUMKUR, with a protocol number LBPL-IAEC-47–05-2019.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 315 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanumegowda, S.M., Srinivasa, C., Shivaiah, A. et al. Antioxidant and Antithrombotic Activities of Kenaf Seed (Hibiscus cannabinus) Coat Ethanol Extract in Sprague Dawley Rats. Appl Biochem Biotechnol 195, 772–800 (2023). https://doi.org/10.1007/s12010-022-04144-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04144-8

Keywords

Navigation