Skip to main content
Log in

Efficient Co-production of Docosahexaenoic Acid Oil and Carotenoids in Aurantiochytrium sp. Using a Light Intensity Gradient Strategy

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aurantiochytrium is a promising source of docosahexaenoic acid (DHA) and carotenoids, but their synthesis is influenced by environmental stress factors. In this study, the effect of different light intensities on the fermentation of DHA oil and carotenoids using Aurantiochytrium sp. TZ209 was investigated. The results showed that dark culture and low light intensity conditions did not affect the normal growth of cells, but were not conducive to the accumulation of carotenoids. High light intensity promoted the synthesis of DHA and carotenoids, but caused cell damage, resulting in a decrease of oil yield. To solve this issue, a light intensity gradient strategy was developed, which markedly improved the DHA and carotenoid content without reducing the oil yield. This strategy produced 30.16 g/L of microalgal oil with 15.11 g/L DHA, 221 µg/g astaxanthin, and 386 µg/g β-carotene. This work demonstrates that strain TZ209 is a promising DHA producer and provides an efficient strategy for the co-production of DHA oil together with carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Li, J., Pora, B. L. R., Dong, K., & Hasjim, J. (2021). Health benefits of docosahexaenoic acid and its bioavailability: A review. Food Science & Nutrition, 9, 5229–5243.

    Article  CAS  Google Scholar 

  2. Bellou, S., Triantaphyllidou, I.-E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 37, 24–35.

    Article  CAS  Google Scholar 

  3. Yin, F.-W., Zhang, Y. T., Jiang, J.-Y., Guo, D.-S., Gao, S., & Gao, Z. (2019). Efficient docosahexaenoic acid production by Schizochytrium sp. via a two-phase pH control strategy using ammonia and citric acid as pH regulators. Process Biochemistry, 77, 1–7.

    Article  CAS  Google Scholar 

  4. Sun, X.-M., Xu, Y.-S., & Huang, H. (2021). Thraustochytrid cell factories for producing lipid compounds. Trends in Biotechnology, 39, 648–650.

    Article  CAS  Google Scholar 

  5. Guo, D.-S., Tong, L.-L., Ji, X.-J., Ren, L.-J., & Ding, Q.-Q. (2020). Development of a strategy to improve the stability of culture environment for docosahexaenoic acid fermentation by Schizochytrium sp. Applied Biochemistry and Biotechnology, 192, 881–894.

    Article  CAS  Google Scholar 

  6. Yin, F., Sun, X., Zheng, W., Luo, X., Peng, C., Jia, Q., & Fu, Y. (2020). Improving the quality of microalgae DHA-rich oil in the deodorization process using deoxygenated steam. Journal of Food Processing and Preservation, 44, e14602.

  7. Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26.

    Article  CAS  Google Scholar 

  8. Bhosale, P. (2004). Environmental and cultural stimulants in the production of carotenoids from microorganisms. Applied microbiology and biotechnology, 63, 351–361.

    Article  CAS  Google Scholar 

  9. Nethravathy, M. U., Mehar, J. G., Mudliar, S. N., & Shekh, A. Y. (2019). Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Comprehensive Reviews in Food Science and Food Safety, 18, 1882–1897.

    Article  Google Scholar 

  10. Du, F., Wang, Y.-Z., Xu, Y.-S., Shi, T.-Q., Liu, W.-Z., Sun, X.-M., & Huang, H. (2021). Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnology Advances, 48, 107725.

  11. Qu, L., Ren, L.-J., Sun, G.-N., Ji, X.-J., Nie, Z.-K., & Huang, H. (2013). Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess and Biosystems Engineering, 36, 1905–1912.

    Article  CAS  Google Scholar 

  12. Yin, F.-W., Guo, D.-S., Ren, L.-J., Ji, X.-J., & Huang, H. (2018). Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. Bioresource Technology, 266, 482–487.

    Article  CAS  Google Scholar 

  13. Wang, Z., Wang, S., Feng, Y., Wan, W., Zhang, H., Bai, X., Cui, Q., & Song, X. (2021). Obtaining high-purity docosahexaenoic acid oil in thraustochytrid Aurantiochytrium through a combined metabolic engineering strategy. Journal of Agricultural and Food Chemistry, 69, 10215–10222.

    Article  CAS  Google Scholar 

  14. Park, H., Kwak, M., Seo, J., Ju, J., Heo, S., Park, S., & Hong, W. (2018). Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess and Biosystems Engineering, 41, 1355–1370.

    Article  CAS  Google Scholar 

  15. Du, H., Liao, X., Gao, Z., Li, Y., Lei, Y., Chen, W., Chen, L., Fan, X., Zhang, K., Chen, S., Ma, Y., Meng, C., & Li, D. (2019). Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium limacinum B4D1. Applied and Environmental Microbiology, 85, e01243–e012419.

  16. Kubo, Y., Shiroi, M., Higashine, T., Mori, Y., Morimoto, D., Nakagawa, S., & Sawayama, S. (2021). Enhanced production of astaxanthin without decrease of DHA content in Aurantiochytrium limacinum by overexpressing multifunctional carotenoid synthase gene. Applied Biochemistry and Biotechnology, 193, 52–64.

    Article  CAS  Google Scholar 

  17. de Oliveira Finco, A. M., Goyzueta Mamani, L. D., de Carvalho, J. C., de Melo Pereira, G. V., Thomaz-Soccol, V., & Soccol, C. R. (2017). Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology, 37, 656–671.

    Article  Google Scholar 

  18. Shi, T.-Q., Wang, L.-R., Zhang, Z.-X., Sun, X.-M., & Huang, H. (2020). Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Frontiers in Bioengineering and Biotechnology, 8, 610.

  19. Li, L., Tang, X., Luo, Y., Hu, X., & Ren, L. (2022). Accumulation and conversion of β-carotene and astaxanthin induced by abiotic stresses in Schizochytrium sp. Bioprocess and Biosystems Engineering, 45, 911–920.

    Article  CAS  Google Scholar 

  20. Sun, X.-M., Ren, L.-J., Zhao, Q.-Y., Ji, X.-J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11, 272.

  21. Aki, T., Hachida, K., Yoshinaga, M., Katai, Y., Yamasaki, T., Kawamoto, S., Kakizono, T., Maoka, T., Shigeta, S., Suzuki, O., & Ono, K. (2003). Thraustochytrid as a potential source of carotenoids. Journal of the American Oil Chemists’ Society, 80, 789.

    Article  CAS  Google Scholar 

  22. Chang, M., Zhang, T., Guo, X., Liu, Y., Liu, R., Jin, Q., & Wang, X. (2020). Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process biochemistry, 94, 190–197.

    Article  CAS  Google Scholar 

  23. Ren, L.-J., Sun, X.-M., Ji, X.-J., Chen, S.-L., Guo, D.-S., & Huang, H. (2017). Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresource Technology, 223, 141–148.

    Article  CAS  Google Scholar 

  24. Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2019). Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnology for Biofuels, 12, 255.

  25. Huang, P.-W., Wang, L.-R., Geng, S.-S., Ye, C., Sun, X.-M., & Huang, H. (2021). Strategies for enhancing terpenoids accumulation in microalgae. Applied Microbiology and Biotechnology, 105, 4919–4930.

    Article  CAS  Google Scholar 

  26. Yin, F.-W., Zhu, S.-Y., Guo, D.-S., Ren, L.-J., Ji, X.-J., Huang, H., & Gao, Z. (2019). Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. Bioresource Technology, 271, 118–124.

    Article  CAS  Google Scholar 

  27. Sun, D., Zhang, Z., Zhang, Y., Cheng, K.-W., & Chen, F. (2019). Light induces carotenoids accumulation in a heterotrophic docosahexaenoic acid producing microalga, Crypthecodinium sp. SUN. Bioresource Technology, 276, 177–182.

    Article  CAS  Google Scholar 

  28. Ye, J., Liu, M., He, M., Ye, Y., & Huang, J. (2019). Illustrating and enhancing the biosynthesis of astaxanthin and docosahexaenoic acid in Aurantiochytrium sp. SK4. Marine Drugs, 17, 45.

    Article  CAS  Google Scholar 

  29. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 91 Spec No, 179–194.

    Article  Google Scholar 

  30. Kurpan Nogueira, D. P., Silva, A. F., Araujo, O. Q. F., & Chaloub, R. M. (2015). Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass & Bioenergy, 72, 280–287.

    Article  CAS  Google Scholar 

  31. Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science (New York, N.Y.), 293, 290–293.

    Article  CAS  Google Scholar 

  32. Zhu, X., Li, S., Liu, L., Li, S., Luo, Y., Lv, C., Wang, B., Cheng, C. H. K., Chen, H., & Yang, X. (2020). Genome sequencing and analysis of Thraustochytriidae sp. SZU445 provides novel insights into the polyunsaturated fatty acid biosynthesis pathway. Marine Drugs, 18, 118.

  33. Richard, D., Kefi, K., Barbe, U., Bausero, P., & Visioli, F. (2008). Polyunsaturated fatty acids as antioxidants. Pharmacological research, 57, 451–455.

    Article  CAS  Google Scholar 

  34. Cristiano, M. C., Mancuso, A., Fresta, M., Torella, D., De Gaetano, F., Ventura, C. A., & Paolino, D. (2021). Topical unsaturated fatty acid vesicles improve antioxidant activity of ammonium glycyrrhizinate. Pharmaceutics, 13, 548–562.

  35. Shi, Y., Chen, Z., Li, Y., Cao, X., Yang, L., Xu, Y., Li, Z., & He, N. (2021). Function of ORFC of the polyketide synthase gene cluster on fatty acid accumulation in Schizochytrium limacinum SR21. Biotechnology for Biofuels, 14, 163.

  36. Yin, F., Sun, X., Zheng, W., Luo, X., Zhang, Y., Yin, L., Jia, Q., & Fu, Y. (2021). Screening of highly effective mixed natural antioxidants to improve the oxidative stability of microalgal DHA-rich oil. Rsc Advances, 11, 4991–4999.

    Article  CAS  Google Scholar 

  37. Qu, L., Ji, X. J., Ren, L. J., Nie, Z. K., Feng, Y., Wu, W. J., Ouyang, P. K., & Huang, H. (2011). Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Letters in Applied Microbiology, 52, 22–27.

    Article  CAS  Google Scholar 

  38. Chen, C.-Y., Lu, I. C., Nagarajan, D., Chang, C.-H., Ng, I. S., Lee, D.-J., & Chang, J.-S. (2018). A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresource Technology, 253, 141–147.

    Article  CAS  Google Scholar 

  39. Li, Z. P., Meng, T., Hang, W., Cao, X. Y., Ni, H., Shi, Y. Y., Li, Q. B., Xiong, Y. Y., & He, N. (2021). Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. Algal Research-Biomass Biofuels and Bioproducts, 58, 102415.

  40. Guo, D.-S., Ji, X.-J., Ren, L.-J., Li, G.-L., & Huang, H. (2017). Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high-oxygen-supply bioreactor. Aiche Journal, 63, 4278–4286.

    Article  CAS  Google Scholar 

  41. Khumrangsee, K., Charoenrat, T., Praiboon, J., & Chittapun, S. (2022). Development of a fed-batch fermentation with stepwise aeration to enhance docosahexaenoic acid and carotenoid content in Aurantiochytrium sp. FIKU018. Journal of Applied Phycology, 34, 1243–1253.

  42. Zhang, K., Chen, L., Liu, J., Gao, F., He, R., Chen, W., Guo, W., Chen, S., & Li, D. (2017). Effects of butanol on high value product production in Schizochytrium limacinum B4D1. Enzyme and microbial technology, 102, 9–15.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Zhejiang Province (LGG20B060001 and LQ21B060002), the Key Research & Development Plan of Zhejiang Province (2020C02049), Science and Technology Plan Project of Taizhou (22gyb06 and 21gya26) and National College Students Innovation and Entrepreneurship Training Program (202110350022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Feng-Wei Yin: formal analysis, methodology, writing—original draft, writing—review and editing. Ci-Tong Zhan, Jiao Huang: formal analysis, investigation. Xiao-Long Sun, Xi Luo, Long-Fei Yin: investigation, validation. Ying-Ying Zhang, Wei-Long Zheng: investigation, data curation. Yong-Qian Fu: conceptualization, formal analysis, writing—review and editing, advisor. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong-Qian Fu.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, FW., Zhan, CT., Huang, J. et al. Efficient Co-production of Docosahexaenoic Acid Oil and Carotenoids in Aurantiochytrium sp. Using a Light Intensity Gradient Strategy. Appl Biochem Biotechnol 195, 623–638 (2023). https://doi.org/10.1007/s12010-022-04134-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04134-w

Keywords

Navigation