Skip to main content
Log in

High Concentration of Fermentable Sugars Prepared from Steam Exploded Lignocellulose in Periodic Peristalsis Integrated Fed-Batch Enzymatic Hydrolysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High concentrations of fermentable sugars are a demand for economical bioethanol production. A single process strategy cannot comprehensively solve the limiting factors in high-solid enzymatic hydrolysis. The multiple intensification strategies in this study achieved the goal of preparing high-concentration fermentable sugars of corn stalk with high solid loading and low enzyme loading. First, steam explosion pretreatment enhanced the hydrophilicity of substrates and enzymatic accessibility. Second, periodic peristalsis was used to improve the mass transfer efficiency and short the liquefaction time. Additionally, fed-batch feeding and enzyme reduced the enzyme loading. Ultimately, the intensification strategies above showed that the highest fermentable sugar content was 313.8 g/L with a solids loading as much as 50% (w/w) and enzyme loading as low as 12.5 FPU/g DM. Thus, these multiple intensification strategies were promising in the high-solid enzymatic hydrolysis of steam-exploded lignocellulose.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Chen, H. Z., & Qiu, W. H. (2010). Key technologies for bioethanol production from lignocellulose. Biotechnology Advances, 28, 556–562

    Article  PubMed  Google Scholar 

  2. Zhao, J., & Wu, X. (2021). Potential of wheat milling byproducts to produce fermentable sugars via mild ethanol–alkaline pretreatment. ACS Sustainable Chemistry & Engineering, 9, 3626–3632

    Article  CAS  Google Scholar 

  3. Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enyzme and Microbial Technology, 18, 312–331

    Article  CAS  Google Scholar 

  4. Bhutto, A. W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A. A., & Yu, G. (2017). Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122, 724–745

    Article  CAS  Google Scholar 

  5. Tocco, D., Carucci, C., Monduzzi, M., Salis, A., & Sanjust, E. (2021). Recent developments in the delignification and exploitation of grass lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 9, 2412–2432

    Article  CAS  Google Scholar 

  6. Li, Y., Bhagwat, S. S., Cortés-Pea, Y. R., & Ki, D. (2021). Sustainable lactic acid production from lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 9, 1341–1351

    Article  CAS  Google Scholar 

  7. Silva, A. S. A. D., Espinheira, R. P., Teixeira, R. S. S., de Souza, M. F., Ferreira-Leitão, V., & Bon, E. P. S. (2020). Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnology for Biofuels, 1, 1–28

    Google Scholar 

  8. Chen, H. Z. (2018). High-solid and multi-phase bioprocess engineering: Theory and practice. Springer

    Book  Google Scholar 

  9. Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Applied Biochemistry and Biotechnology, 33, 67–81

    Article  CAS  Google Scholar 

  10. Zhang, Y. P., Oates, L. G., Serate, J., Xie, D., Pohlmann, E., Bukhman, Y. V., & Eilert, D. (2018). Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape‐level environmental benefits. GCB Bioenergy, 10, 825–840

    Article  CAS  Google Scholar 

  11. Chen, H. Z. (2017). Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Engineering in Life Sciences, 17, 489–499

    Article  CAS  PubMed  Google Scholar 

  12. Khatun, M. H. A., Wang, L., Zhao, J. Y., & Chen, H. Z. (2019). Tissue fractionation of corn stover through steam explosion-assisted mechanical carding: Its effect on enzymatic hydrolysis and pulping. Biomass and Bioenergy, 122, 109–116

    Article  CAS  Google Scholar 

  13. Chen, H. Z. (2015). Gas Explosion Technology and Biomass Refinery. Springer

    Book  Google Scholar 

  14. Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B. … Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 199

  15. Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. Bioresource Technology, 205, 142–152

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass and Bioenergy, 93, 13–24

    Article  CAS  Google Scholar 

  17. Li, J. W., & Wang, L. (2016). Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw. Journal of Bioscience and Bioengineering, 122, 620–626

    Article  CAS  PubMed  Google Scholar 

  18. Khatun, M. H. A., Wang, L., & Chen, H. (2020). High solids all-inclusive polysaccharide hydrolysis of steam-exploded corn pericarp by periodic peristalsis. Carbohydrate Polymers, 246, 116483

    Article  CAS  PubMed  Google Scholar 

  19. Li, J., Wang, L., & Chen, H. (2016). Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw. Journal of Bioscience and Bioengineering, 122, 620–626

    Article  CAS  PubMed  Google Scholar 

  20. Modenbach, A. A. (2013). Enzymatic hydrolysis of biomass at high-solids loadings-A review. Biomass and Bioenergy, 56, 526–544

    Article  CAS  Google Scholar 

  21. Hong, Y. Y., Wang, Y. T., Zhu, S. M., Luo, X. C., Li, S., Zhuo, M., & Zhou, T. (2019). Improved enzymatic hydrolysis and ethanol production by combined alkaline peroxide and ionic liquid-water mixtures pretreatment of rice straw. Journal of Applied Chemistry and Biotechnology, 94, 1451–1459

    Article  CAS  Google Scholar 

  22. Chang, S. Q., Li, W. L., & Zhang, Y. M. (2018). Impact of double alkaline pretreatment on enzymatic hydrolysis of palm fibre. Carbon Resources Conversion, 1, 147–152

    Article  CAS  Google Scholar 

  23. Gong, Z. W., Wang, X. M., Yuan, W., Wang, Y. N., & Liu, Y. (2020). Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels, 13, 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Y., Guo, L. J., Wang, L. Y., Zhan, W., & Zhou, H. (2017). Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass. Bioresource Technology, 232, 270–277

    Article  CAS  PubMed  Google Scholar 

  25. Sun, L. L., & Wang, L. (2020). High productivity ethanol from solid-state fermentation of steam-exploded corn stover using Zymomonas mobilis by N2 periodic pulsation process intensification. Biotechnology and Applied Biochemistry, 192, 466–481.

  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617, 1–16

    Google Scholar 

  27. Zhao, Q. H., & Wang, L. (2019). Effect of novel pretreatment of steam explosion associated with ammonium sulfite process on enzymatic hydrolysis of corn straw. Applied Biochemistry and Biotechnology, 189, 485–497.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, M. S., Li, J. B., Han, L. J., & Xiao, W. H. (2020). High-solids enzymatic hydrolysis of ball-milled corn stover with reduced slurry viscosity and improved sugar yields. Biotechnology for Biofuels, 13, 1–11

    Article  Google Scholar 

  29. Cai, X., Hu, C., Wang, J., Zeng, X., Luo, J., Li, M., & Zheng, Y. (2021). Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode. Bioresource Technology, 326, 124768

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J. T., & Wang, L. (2020). Effect of periodic high-frequency vibration with rigid spheres added on high solids enzymatic hydrolysis of steam-exploded corn straw. Process Biochemistry, 94, 99–109

    Article  CAS  Google Scholar 

  31. Mukasekuru, M. R., Kaneza, P., Sun, H., & Sun, F. F. (2020). Fed-batch high-solids enzymatic saccharification of lignocellulosic substrates with a combination of additives and accessory enzymes. Industrial Crops and Products, 146, 112–156

    Article  Google Scholar 

  32. Wang, H. M., Liu, Z., Zheng, X., Pan, X. J., & Zhang, H. (2020). Assessment on Temperature-Pressure Severally Controlled Explosion Pretreatment of Poplar. Carbohydrate Polymers, 230, 115622

    Article  CAS  PubMed  Google Scholar 

  33. Molaverdi, M., & Karimi, K. (2018). Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment. Energy, 167, 654–660

    Article  Google Scholar 

  34. Ricciardi, L., Verboom, W., Lange, J., & Huskens, J. (2021). Selective extraction of xylose from acidic hydrolysate-from fundamentals to process. ACS Sustainable Chemistry & Engineering, 9, 6632–6638

    Article  CAS  Google Scholar 

  35. Rastogi, M., & Shrivastava, S. (2017). Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 80, 330–340

    Article  Google Scholar 

  36. Mahajan, R., Chandel, S., Puniya, A. K., & Goel, G. (2020). Effect of pretreatments on cellulosic composition and morphology of pine needle for possible utilization as substrate for anaerobic digestion. Biomass and Bioenergy, 141, 105705

    Article  CAS  Google Scholar 

  37. Zhao, C., Zou, Z., Li, J., Jia, H., Liesche, J., Fang, H., & Chen, S. (2017). A novel and efficient bioprocess from steam exploded corn stover to ethanol in the context of on-site cellulase production. Energy, 123, 499–510

    Article  CAS  Google Scholar 

  38. Hernández-Beltrán, J. U., & Hernández-Escoto, H. (2018). Enzymatic hydrolysis of biomass at high-solids loadings through fed-batch operation. Biomass and Bioenergy, 119, 191–197

    Article  Google Scholar 

  39. Neilson, M. J., & Kelsey, R. G. (1982). Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates. Biotechnology and Bioengineering, 24, 293–304

    Article  CAS  PubMed  Google Scholar 

  40. Tjerneld, F., & Persson, I. (1991). Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two-phase system. Biotechnology and Bioengineering, 37, 876

    Article  CAS  PubMed  Google Scholar 

  41. Pimenova, N. V., & Hanley, T. R. (2004). Effect of corn stover concentration on rheological characteristics. Applied Biochemistry and Biotechnology, 114, 347–360

    Article  Google Scholar 

  42. Hou, W. L., & Li, L. (2017). Oxygen transfer in high solids loading and highly viscous lignocellulose hydrolysates. ACS Sustainable Chemistry & Engineering, 5, 11395–11402

    Article  CAS  Google Scholar 

  43. Hodge, D. B., Karim, M. N., Schell, D. J., & Mcmillan, J. D. (2009). Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Applied Biochemistry and Biotechnology, 152, 88–107

    Article  CAS  PubMed  Google Scholar 

  44. Roche, C. M., Dibble, C. J., Knutsen, J. S., & Stickel, J. J. (2009). Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnology and Bioengineering, 104, 290–300

    Article  CAS  PubMed  Google Scholar 

  45. Wang, L., Feng, X. Y., Zhang, Y. Z., & Chen, H. Z. (2022). Lignocellulose particle size and rheological properties changes in periodic peristalsis enzymatic hydrolysis at high solids[J]. Biochemical Engineering Journal, 178, 108284

  46. Gong, K. D., Hu, Q., Yao, L., Li, M., Sun, D. Z., Shao, Q., & Guo, Z. H. (2018). Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(VI) Removal from Wastewater. ACS Sustainable Chemistry & Engineering, 6, 7283–7291

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key R&D Program of China (Grant 2019YFB1503800) and the Transformational Technologies for Clean Energy and Demonstration (Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA 21060300).

Author information

Authors and Affiliations

Authors

Contributions

ML: Writing - original draft, Writing - review & editing.

LW: Funding acquisition, Investigation, Project administration, Supervision, Writing - review & editing.

QZ:Methodology, Data curation, Software.

HC: Conceptualization, Investigation, Supervision, Funding acquisition.

Corresponding author

Correspondence to Lan Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to publish the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The highest content of fermentable sugars was 313.8 g/L.

2. Steam explosion, periodic peristalsis, fed-batch feeding and enzyme were synergistic.

3. The solid loading of hydrolysis reached as much as 50% (w/w).

4. The enzyme loading reduced as low as 12.5 FPU/g DM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, L., Zhao, Q. et al. High Concentration of Fermentable Sugars Prepared from Steam Exploded Lignocellulose in Periodic Peristalsis Integrated Fed-Batch Enzymatic Hydrolysis. Appl Biochem Biotechnol 194, 5255–5273 (2022). https://doi.org/10.1007/s12010-022-03969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03969-7

Keywords

Navigation