Skip to main content
Log in

Gene Cloning, Functional Expression, and Characterization of a Novel GH46 Chitosanase from Streptomyces avermitilis (SaCsn46A)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A n ovel glycoside hydrolase (GH) family 46 chitosanase (SaCsn46A) from Streptomyces avermitilis was cloned and functionally expressed in Escherichia coli Rosetta (DE3) strains. SaCsn46A consists of 271 amino acids, which includes a 34-amino acid signal peptide. The protein sequence of SaCsn46A shows maximum identity (83.5%) to chitosanase from Streptomyces sp. SirexAA-E. Then, the mature enzyme was purified to homogeneity through Ni-chelating affinity chromatography with a recovery yield of 78% and the molecular mass of purified enzyme was estimated to be 29 kDa by SDS-PAGE. The recombinant enzyme possessed a temperature optimum of 45 °C and a pH optimum of 6.2, and it was stable at pH ranging from 4.0 to 9.0 and below 30 °C. The Km and Vmax values of this enzyme were 1.32 mg/mL, 526.32 U/mg/min, respectively (chitosan as substrate). The enzyme activity can be enhanced by Mg2+ and especially Mn2+, which could enhance the activity about 3.62-fold at a 3-mM concentration. The enzyme can hydrolyze a variety of polysaccharides which are linked by β-1,4-glycosidic bonds such as chitin, xylan, and cellulose, but it could not hydrolyze polysaccharides linked by α-1,4-glycosidic bonds. The results of thin-layer chromatography and HPLC showed that the enzyme exhibited an endo-type cleavage pattern and could hydrolyze chitosan to glucosamine (GlcN) and (GlcN)2. This study demonstrated that SaCsn46A is a promising enzyme to produce glucosamine and chitooligosaccharides (COS) from chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Zhang, J., Cao, H., Li, S., Zhao, Y., Wang, W., Xu, Q., Du, Y., & Yin, H. (2015). Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. International Journal of Biological Macromolecules, 81, 362–369.

    Article  CAS  Google Scholar 

  2. Guo, N., Sun, J., Wang, W., Gao, L., Liu, J., Liu, Z., Xue, C., & Mao, X. (2019). Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414. Food Chemistry, 286, 696–702.

    Article  CAS  Google Scholar 

  3. Mao, X., Guo, N., Sun, J., & Xue, C. (2017). Comprehensive utilization of shrimp waste based on biotechnological methods: A review. Journal of Cleaner Production, 143, 814–823.

    Article  CAS  Google Scholar 

  4. Sun, H., Yang, G., Cao, R., Mao, X., & Liu, Q. (2020). Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome. International Journal of Biological Macromolecules, 159, 904–910.

    Article  CAS  Google Scholar 

  5. Salah, R., Michaud, P., Mati, F., Harrat, Z., Lounici, H., Abdi, N., Drouiche, N., & Mameri, N. (2013). Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. International Journal of Biological Macromolecules, 52, 333–339.

    Article  CAS  Google Scholar 

  6. Rahimnejad, S., Yuan, X., Wang, L., Lu, K., Song, K., & Zhang, C. (2018). Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression. Fish & Shellfish Immunology, 80, 405–415.

    Article  CAS  Google Scholar 

  7. Ma, C., Li, X., Yang, K., & Li, S. (2020). Characterization of a new chitosanase from a marine Bacillus sp. and the anti-oxidant activity of its hydrolysate. Marine Drugs, 18.

  8. Park, P.-J., Je, J.-Y., & Kim, S.-K. (2003). Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. Journal of Agricultural and Food Chemistry, 51, 4624–4627.

    Article  CAS  Google Scholar 

  9. Yue, L., Li, J., Chen, W., Liu, X., Jiang, Q., & Xia, W. (2017). Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydrate Polymers, 176, 356–364.

    Article  CAS  Google Scholar 

  10. Kumar, M., Dangayach, P., & Pareek, N. (2020). Enhanced glucosamine production through synergistic action of Aspergillus terreus chitozymes. Journal of Cleaner Production, 262, 121363.

    Article  CAS  Google Scholar 

  11. Sun, H., Cao, R., Li, L., Zhao, L., & Liu, Q. (2018). Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis. Process Biochemistry, 75, 146–151.

    Article  CAS  Google Scholar 

  12. Lin, S., Qin, Z., Chen, Q., Fan, L., Zhou, J., & Zhao, L. (2019). Efficient immobilization of bacterial GH family 46 chitosanase by carbohydrate-binding module fusion for the controllable preparation of chitooligosaccharides. Journal of Agricultural and Food Chemistry, 67, 6847–6855.

    Article  CAS  Google Scholar 

  13. Shehata, A. N., Abd El Aty, A. A., Darwish, D. A., Abdel Wahab, W. A., & Mostafa, F. A. (2018). Purification, physicochemical and thermodynamic studies of antifungal chitinase with production of bioactive chitosan-oligosaccharide from newly isolated Aspergillus griseoaurantiacus KX010988. International Journal of Biological Macromolecules, 107, 990–999.

    Article  CAS  Google Scholar 

  14. Ribas Fonseca, L., Porto Santos, T., Czaikoski, A., & Lopes Cunha, R. (2020). Modulating properties of polysaccharides nanocomplexes from enzymatic hydrolysis of chitosan. Food Research International, 137, 109642.

    Article  CAS  Google Scholar 

  15. Xia, W., Liu, P., & Liu, J. (2008). Advance in chitosan hydrolysis by non-specific cellulases. Bioresource Technology, 99, 6751–6762.

    Article  CAS  Google Scholar 

  16. Qin, Z., Chen, Q., Lin, S., Luo, S., Qiu, Y., & Zhao, L. (2018). Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chemistry, 253, 139–147.

    Article  CAS  Google Scholar 

  17. Pechsrichuang, P., Lorentzen, S. B., Aam, B. B., Tuveng, T. R., Hamre, A. G., Eijsink, V. G. H., & Yamabhai, M. (2018). Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydrate Polymers, 186, 420–428.

    Article  CAS  Google Scholar 

  18. Yang, G., Sun, H., Cao, R., Liu, Q., & Mao, X. (2020). Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5. International Journal of Biological Macromolecules, 146, 518–523.

    Article  CAS  Google Scholar 

  19. Yorinaga, Y., Kumasaka, T., Yamamoto, M., Hamada, K., & Kawamukai, M. (2017). Crystal structure of a family 80 chitosanase from Mitsuaria chitosanitabida. FEBS Letters, 591, 540–547.

    Article  CAS  Google Scholar 

  20. Zhou, Z., Zhao, S., Liu, Y., Chang, Z., Ma, Y., Li, J., & Song, J. (2016). A highly conserved aspartic acid residue of the chitosanase from Bacillus Sp. TS is involved in the substrate binding. Applied Biochemistry and Biotechnology, 180, 1167–1179.

    Article  CAS  Google Scholar 

  21. Chen, J., Liu, M., Liu, X., Miao, J., Fu, C., Gao, H., Müller, R., Zhang, Q., & Zhang, L. (2016). Interrogation of Streptomyces avermitilis for efficient production of avermectins. Synthetic and Systems Biotechnology, 1, 7–16.

    Article  Google Scholar 

  22. Deng, Q., Xiao, L., Liu, Y., Zhang, L., Deng, Z., & Zhao, C. (2019). Streptomyces avermitilis industrial strain as cell factory for Ivermectin B1a production. Synthetic and Systems Biotechnology, 4, 34–39.

    Article  Google Scholar 

  23. Heggset, E. B., Tuveng, T. R., Hoell, I. A., Liu, Z., Eijsink, V. G. H., & Vårum, K. M. (2012). Mode of Action of a Family 75 Chitosanase from Streptomyces avermitilis. Biomacromolecules, 13, 1733–1741.

    Article  CAS  Google Scholar 

  24. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  25. Yoon, H.-G., Kim, H.-Y., Lim, Y.-H., Kim, H.-K., Shin, D.-H., Hong, B.-S., & Cho, H.-Y. (2000). Thermostable chitosanase from S sp. strain CK4: cloning and expression of the gene and characterization of the enzyme. Applied and Environmental Microbiology, 66, 3727.

    Article  CAS  Google Scholar 

  26. Su, C., Wang, D., Yao, L., & Yu, Z. (2006). Purification, characterization, and gene cloning of a chitosanase from Bacillus Species strain S65. Journal of Agricultural and Food Chemistry, 54, 4208–4214.

    Article  CAS  Google Scholar 

  27. Kim, P. I., Kang, T. H., Chung, K. J., Kim, I. S., & Chung, K. C. (2004). Purification of a constitutive chitosanase produced by Bacillus sp. MET 1299 with cloning and expression of the gene. FEMS Microbiology Letters, 240, 31–39.

    Article  CAS  Google Scholar 

  28. Hirano, K., Arayaveerasid, S., Seki, K., Adams, D. J., & Mitsutomi, M. (2014). Characterization of a chitosanase from Aspergillus fumigatus ATCC13073. Bioscience, Biotechnology, and Biochemistry, 76, 1523–1528.

    Article  CAS  Google Scholar 

  29. Kim, S. Y. S., Lee, D.-H., & Ho, Ke. (1998). Purification and characteristics of two types of chitosanases from Aspergillus fumigatus KH-94. Journal of Microbiology and Biotechnology, 8, 568–574.

    CAS  Google Scholar 

  30. Chen, X. E., Xia, W., & Yu, X. (2005). Purification and characterization of two types of chitosanase from Aspergillus sp. CJ22-326. Food Research International, 38, 315–322.

    Article  CAS  Google Scholar 

  31. Qin, Z., Luo, S., Li, Y., Chen, Q., Qiu, Y., Zhao, L., Jiang, L., & Zhou, J. (2018). Biochemical properties of a novel chitosanase from Bacillus amyloliquefaciens and its use in membrane reactor. LWT, 97, 9–16.

    Article  CAS  Google Scholar 

  32. Sun, H., Mao, X., Guo, N., Zhao, L., Cao, R., & Liu, Q. (2018). Discovery and characterization of a novel chitosanase from Paenibacillus dendritiformis by phylogeny-based enzymatic product specificity prediction. Journal of Agricultural and Food Chemistry, 66, 4645–4651.

    Article  CAS  Google Scholar 

  33. Yang, Y., Zheng, Z., Xiao, Y., Zhang, J., Zhou, Y., Li, X., Li, S. & Yu, H. (2019). Cloning and characterization of a cold-adapted chitosanase from marine bacterium Bacillus sp. BY01. Molecules, 24.

  34. Luo, S., Qin, Z., Chen, Q., Fan, L., Jiang, L., & Zhao, L. (2020). High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation. International Journal of Biological Macromolecules, 149, 1034–1041.

    Article  CAS  Google Scholar 

  35. Thadathil, N., & Velappan, S. P. (2014). Recent developments in chitosanase research and its biotechnological applications: A review. Food Chemistry, 150, 392–399.

    Article  CAS  Google Scholar 

  36. Liu, G. L., Li, Y., Zhou, H. X., Chi, Z. M., & Madzak, C. (2012). Over-expression of a bacterial chitosanase gene in Yarrowia lipolytica and chitosan hydrolysis by the recombinant chitosanase. Journal of Molecular Catalysis B: Enzymatic, 83, 100–107.

    Article  CAS  Google Scholar 

  37. Huang, Z., Mao, X., Lv, X., Sun, G., Zhang, H., Lu, W., Liu, Y., Li, J., Du, G., & Liu, L. (2021). Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient glucosamine production. Bioresource Technology, 334, 125241.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31700075); the Natural Science Foundation of the Jiangsu Higher Education Institution of China (19KJB180001); the Key Research and Development Program of Shandong Province, China (2019JZZY020605); the Initial Research Funding of Changzhou University (ZMF17020115); the Extracurricular Innovation and Entrepreneurship Fund for College Students of Changzhou University (ZMF19020280); the Natural Science Foundation of Jiangsu Province (BK20181465).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J. Guo, Z.W. Man. Methodology: J. Guo, W.J. Gao. Data analysis: J. Guo, Y. Wang. Software: J. Guo. Writing original manuscript: J. Guo. Review and revising manuscript: Y. Wang, W.J. Gao., X.R. Wang, X. Gao, Z.W. Man, Z.Q. Cai, Q. Qing. Funding acquisition: J. Guo, Z.W. Man, Z.Q. Cai, Q. Qing. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Jing Guo, Zaiwei Man, Zhiqiang Cai or Qing Qing.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 456 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wang, Y., Gao, W. et al. Gene Cloning, Functional Expression, and Characterization of a Novel GH46 Chitosanase from Streptomyces avermitilis (SaCsn46A). Appl Biochem Biotechnol 194, 813–826 (2022). https://doi.org/10.1007/s12010-021-03687-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03687-6

Keywords

Navigation