Skip to main content

Advertisement

Log in

Recent Advances on Bioactive Ingredients of Morchella esculenta

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Morchella esculenta (M. esculenta) is a delicious edible mushroom prized for its special flavor and strong health promoting abilities. Several bioactive ingredients including polysaccharides, polyphenolic compounds, proteins, and protein hydrolysates all contribute to the biological activities of M. esculenta. Different polysaccharides could be extracted and purified depending on the extraction methods and M. esculenta studied. Monosaccharide composition of M. esculenta polysaccharides (MEP) generally includes mannose, galactose, and glucose, etc. MEP possess multiple bioactivities such as antioxidant, anti-inflammation, immunoregulation, hypoglycemic activity, atherosclerosis prevention and antitumor ability. Other components like polyphenols, protein hydrolysates, and several crude extracts are also reported with strong bioactivities. In terms of potential applications of M. esculenta and its metabolites as nutritional supplements and drug supplements, this review aims to comprehensively summarize the structural characteristics, biological activities, research progress, and research trends of the active ingredients produced by M. esculenta. Among the various biological activities, the substances extracted from both natural collected and submerged fermented M. esculenta are promising for antioxidants, immunomodulation, anti-cancer and anti-inflammatory applications. However, further researches on the extraction conditions and chemical structure of bioactive compounds produced by M. esculenta still need investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data and materials are available.

References

  1. Jahangir, M. M., Khan, A. A., Ali, M. A., Zaif, K., Khan, A., Karim, W., & Samin, G. (2016). The good about Morchella esculenta mushrooms: A review. International Journal of Agricultural and Environmental Research, 2(3), 256–262.

    Google Scholar 

  2. Giavasis, I. (2014). Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology, 26C(7), 162–173.

    Article  Google Scholar 

  3. Tietel, Z., & Masaphy, S. (2017). True Morels (Morchella) – Nutritional and phytochemical composition, health benefits and flavor: A review. Critical Reviews in Food Science and Nutrition, 58(11), 1888–1901.

    Article  PubMed  Google Scholar 

  4. Meng, X., Che, C. C., Zhang, J. M., Gong, Z. J., Si, M. R., Yang, G., Cao, L., & Liu, J. F. (2019). Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. International Journal of Biological Macromolecules, 129, 608–614.

    Article  CAS  PubMed  Google Scholar 

  5. Heleno, S. A., Stojkovic, D., Barros, L., Glamoclija, J., Sokovic, M., Martins, A., Queiroz, M. J. R. P., & Ferreira, I. C. F. R. (2013). A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Research International, 51(1), 236–243.

    Article  CAS  Google Scholar 

  6. Meng, F. Y., Liu, X. N., Jia, L., Song, Z., Deng, P., & Fan, K. M. (2010). Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohydrate polymers, 79(3), 700–704.

    Article  CAS  Google Scholar 

  7. Zhang, Y., Wang, D., Chen, Y., Liu, T., Zhang, S., Fan, H., Liu, H., & Li, Y. (2021). Healthy function and high valued utilization of edible fungi. Food Science and Human Wellness, 10(4), 408–420.

    Article  Google Scholar 

  8. Hu, M., Chen, Y., Wang, C., Cui, H., Duan, P., Zhai, T., Yang, Y., & Li, S. (2013). Induction of apoptosis in HepG2 cells by polysaccharide MEP-II from the fermentation broth of Morchella esculenta. Biotechnology Letters, 35(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Nitha, B., Meera, C. and Janardhanan, K. (2007). Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Current Science, 235–239.

  10. Liao, X., Li, F., Tan, Y., Lu, K., Wu, S., Yin, R., & Ming, J. (2017). Cellular antioxidant and antiproliferative activities of Morchella conica Pers. Polyphenols in vitro. Journal of Food and Nutrition Research, 5(10), 742–749.

    Article  CAS  Google Scholar 

  11. Li, F. H., Zheng, S. J., Zhao, J. C., Liao, X., Wu, S. R., & Ming, J. (2020). Phenolic extract of Morchella angusticeps peck inhibited the proliferation of HepG2 cells in vitro by inducing the signal transduction pathway of p38/MAPK. Journal of Integrative Agriculture, 19(11), 2829–2838.

    Article  CAS  Google Scholar 

  12. Zhao, X. H., Zou, X. W., Li, Q., Cai, X., Li, L. Y., Wang, J. R., Wang, Y., Fang, C., Xu, F., Huang, Y., Chen, B. K., Tang, J. T., & Wang, H. G. (2018). Total flavones of fermentation broth by co-culture of Coprinus comatus and Morchella esculenta induces an anti-inflammatory effect on LPS-stimulated RAW264.7 macrophages cells via the MAPK signaling pathway. Microbial Pathogenesis, 125, 431–437.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Q., Wu, C., Fan, G. J., Li, T. T., & Sun, Y. J. (2018). Improvement of antioxidant activity of Morchella esculenta protein hydrolysate by optimized glycosylation reaction. Cyta-Journal of Food, 16(1), 238–246.

    Article  CAS  Google Scholar 

  14. Zhang, Q., Wu, C., Fan, G. J., Li, T. T., & Wen, X. (2018). Characteristics and enhanced antioxidant activity of glycated Morchella esculenta protein isolate. Food Science and Technology, 38(1), 126–133.

    Article  Google Scholar 

  15. Shameem, N., Kamili, A. N., Ahmad, M., Masoodi, F., & Parray, J. A. (2017). Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microbial pathogenesis, 105, 356–360.

    Article  CAS  PubMed  Google Scholar 

  16. Tietel, Z., & Masaphy, S. (2018). True morels (Morchella)-nutritional and phytochemical composition, health benefits and flavor: A review. Critical Reviews In Food Science And Nutrition, 58(11), 1888–1901.

    Article  CAS  PubMed  Google Scholar 

  17. Heleno, S. A., Stojković, D., Barros, L., Glamočlija, J., Soković, M., Martins, A., Queiroz, M. J. R., & Ferreira, I. C. (2013). A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Research International, 51(1), 236–243.

    Article  CAS  Google Scholar 

  18. Yang, C., Meng, Q., Zhou, X., Cui, Y., & Fu, S. (2019). Separation and identification of chemical constituents of Morchella conica isolated from Guizhou Province China. Biochemical Systematics and Ecology, 86, 103919.

    Article  CAS  Google Scholar 

  19. Tsai, S.-Y., Weng, C.-C., Huang, S.-J., Chen, C.-C., & Mau, J.-L. (2006). Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. LWT-Food Science and Technology, 39(10), 1066–1071.

    Article  CAS  Google Scholar 

  20. Cai, Z.-N., Li, W., Mehmood, S., Pan, W.-J., Wang, Y., Meng, F.-J., Wang, X.-F., Lu, Y.-M., & Chen, Y. (2018). Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydrate Polymers, 195, 29–38.

    Article  CAS  PubMed  Google Scholar 

  21. Nitha, B., De, S., Adhikari, S., Devasagayam, T., & Janardhanan, K. (2010). Evaluation of free radical scavenging activity of morel mushroom, Morchella esculenta mycelia: A potential source of therapeutically useful antioxidants. Pharmaceutical Biology, 48(4), 453–460.

    Article  CAS  PubMed  Google Scholar 

  22. Meng, F., Zhou, B., Lin, R., Jia, L., Liu, X., Deng, P., Fan, K., Wang, G., Wang, L., & Zhang, J. (2010). Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresource Technology, 101(12), 4564–4569.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Y.-M., Wang, J., Wu, Z.-G., Yang, J.-M., Li, W., & Shen, L.-X. (2016). Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes. International Journal of Biological Macromolecules, 93, 136–144.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, C. (2019). Extraction, separation and purification of acidic polysaccharide from Morchella esculenta by high voltage pulsed electric field. International Journal Bioautomation, 23(2), 193–202.

    Article  CAS  Google Scholar 

  25. Wen, Y., Peng, D., Li, C. L., Hu, X. J., Bi, S. X., Song, L. Y., Peng, B., Zhu, J. H., Chen, Y. Y., & Yu, R. M. (2019). A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. International Journal of Biological Macromolecules, 137, 8–19.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, C., Sun, Y., Cui, W. and Xu, N. (2018). Effects of Morchella esculenta acidic polysaccharide on nerve growth factor of diabetes mellitus rats. NeuroQuantology, 16(6), https://doi.org/10.14704/nq.2018.16.6.1609.

  27. Li, S., Gao, A., Dong, S., Chen, Y., Sun, S., Lei, Z., & Zhang, Z. (2017). Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. International Journal of Biological Macromolecules, 96, 26–34.

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Wu, H., Liu, Y., Nan, J., Park, H. J., Chen, Y. and Yang, L. (2021). Chemical structure and immunomodulatory activity of an exopolysaccharide produced by Morchella esculenta under submerged fermentation. Food & Function, https://doi.org/10.1039/D1FO01683K.

  29. Song, Y., Yang, Y., Zhang, Y., Duan, L., Zhou, C., Ni, Y., Liao, X., Li, Q., & Hu, X. (2013). Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva). Carbohydrate Polymers, 98(1), 686–691.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X., Zhang, Z., & Zhao, M. (2015). Carboxymethylation of polysaccharides from Tremella fuciformis for antioxidant and moisture-preserving activities. International Journal of Biological Macromolecules, 72, 526–530.

    Article  CAS  PubMed  Google Scholar 

  31. Tao, Y., Zhang, Y., & Zhang, L. (2009). Chemical modification and antitumor activities of two polysaccharide–protein complexes from Pleurotus tuber-regium. International Journal of Biological Macromolecules, 45(2), 109–115.

    Article  CAS  PubMed  Google Scholar 

  32. Li, W., Cai, Z.-N., Mehmood, S., Liang, L.-L., Liu, Y., Zhang, H.-Y., Chen, Y., & Lu, Y.-M. (2019). Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. International Journal of Biological Macromolecules, 129, 904–915.

    Article  CAS  PubMed  Google Scholar 

  33. Thakur, M. and Lakhanpal, T. (2014) Qualitative phytochemical screening, total phenolic content and in-vitro antioxidant activity in methanolic extracts of Morchella esculenta Fr. 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8) 19th–22nd Nov. Citeseer.

  34. Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243.

    Article  CAS  PubMed Central  Google Scholar 

  35. Badshah, S. L., Faisal, S., Muhammad, A., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine and Pharmacotherapy, 140, 111596.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, X., Zou, X., Li, Q., Cai, X., Li, L., Wang, J., Wang, Y., Fang, C., Xu, F., & Huang, Y. (2018). Total flavones of fermentation broth by co-culture of Coprinus comatus and Morchella esculenta induces an anti-inflammatory effect on LPS-stimulated RAW264. 7 macrophages cells via the MAPK signaling pathway. Microbial pathogenesis, 125, 431–437.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Q., Lu, K., Li, F., Lei, L., Zhao, J., Wu, S., Yin, R., & Ming, J. (2019). Polyphenols from Morchella angusticepes Peck attenuate D-galactosamine/lipopolysaccharide-induced acute hepatic failture in mice. Journal of Functional Foods, 58, 248–254.

    Article  CAS  Google Scholar 

  38. Kanwal, H. K., & Reddy, M. S. (2011). Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World Journal of Microbiology & Biotechnology, 27(3), 687–691.

    Article  CAS  Google Scholar 

  39. Papinutti, L., & Lechner, B. (2008). Influence of the carbon source on the growth and lignocellulolytic enzyme production by Morchella esculenta strains. Journal of Industrial Microbiology & Biotechnology, 35(12), 1715–1721.

    Article  CAS  Google Scholar 

  40. Bisakowski, B., Atwal, A. S., & Kermasha, S. (2000). Characterization of lipoxygenase activity from a partially purified enzymic extract from Morchella esculenta. Process Biochemistry, 36(1–2), 1–7.

    Article  CAS  Google Scholar 

  41. Zhang, Q., Wu, C., Wang, T., Sun, Y. J., Li, T. T., & Fan, G. J. (2019). Improvement of biological activity of morchella esculenta protein hydrolysate by microwave-assisted selenization. Journal of Food Science, 84(1), 73–79.

    Article  CAS  PubMed  Google Scholar 

  42. Khan, W., Bibi, Z., Uddin, M. N., Gul, H., & Khan, H. (2019). Antimicrobial potential of different solvent extracts of morchella esculenta (L.) Pers. Bangladesh Journal of Botany, 48(4), 943–949.

    Article  Google Scholar 

  43. Akyuz, M., Kirecci, A. D. O., Gokce, Z., Kirbag, S., & Yilmaz, O. (2019). Biochemical constituents and antioxidant activities of some mushrooms from Turkey: Agaricus spp., Pleurotus spp., Morchella esculenta and Terfezia boudieri. Journal of the Faculty of Pharmacy of Istanbul University, 49(1), 1–7.

    Google Scholar 

  44. Yang, Y., Chen, J., Lei, L., Li, F., Tang, Y., Yuan, Y., Zhang, Y., Wu, S., Yin, R., & Ming, J. (2019). Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264. 7 cells. Food and Chemical Toxicology, 125, 38–45.

    Article  CAS  PubMed  Google Scholar 

  45. Chandra, P., Sharma, R. K., & Arora, D. S. (2020). Antioxidant compounds from microbial sources: A review. Food Research International, 129, 1088.

    Article  Google Scholar 

  46. Bhattacharya, S. (2015), in Free radicals in human health and disease, Springer, pp. 17–29.

  47. Birch-Machin, M., & Bowman, A. (2016). Oxidative stress and ageing. British Journal of Dermatology, 175, 26–29.

    Article  CAS  Google Scholar 

  48. Mau, J.-L., Chang, C.-N., Huang, S.-J., & Chen, C.-C. (2004). Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chemistry, 87(1), 111–118.

    Article  CAS  Google Scholar 

  49. Badshah, S. L., Riaz, A., Muhammad, A., Tel Çayan, G., Çayan, F., Emin Duru, M., Ahmad, N., Emwas, A.-H., & Jaremko, M. (2021). Isolation, characterization, and medicinal potential of polysaccharides of Morchella esculenta. Molecules, 26(5), 1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fu, L., Wang, Y., Wang, J., Yang, Y., & Hao, L. (2013). Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta. Food & Function, 4(6), 871–879.

    Article  CAS  Google Scholar 

  51. Li, H., Song, F., Duan, L. R., Sheng, J. J., Xie, Y. H., Yang, Q., Chen, Y., Dong, Q. Q., Zhang, B. L., & Wang, S. W. (2016). Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway. Entific Reports, 6, 23693.

    CAS  Google Scholar 

  52. Jang, H. J., Hong, E. M., Kim, M., Kim, J. H., & Jang, J. (2016). Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer. Oncotarget, 7(29), 46219–46229.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, W., Cai, Z.-N., Mehmood, S., Wang, Y., Pan, W.-J., Zhang, W.-N., Lu, Y.-M., & Chen, Y. (2018). Polysaccharide FMP-1 from Morchella esculenta attenuates cellular oxidative damage in human alveolar epithelial A549 cells through PI3K/AKT/Nrf2/HO-1 pathway. International Journal of Biological Macromolecules, 120, 865–875.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, L., Yang, Q., Li, J., Hou, G., Chen, T., & Ye, M. (2019). Nephroprotective effects of Lachnum melanin against acute kidney injury induced by cisplatin in mice. Process Biochemistry, 83, 198–205.

    Article  CAS  Google Scholar 

  55. Erseckin, V., Mert, H., Irak, K., Yildirim, S. and Mert, N. (2020). Nephroprotective effect of ferulic acid on gentamicin-induced nephrotoxicity in female rats. Drug and Chemical Toxicology, 1–7.

  56. Nitha, B., & Janardhanan, K. (2008). Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice. Food and Chemical Toxicology, 46(9), 3193–3199.

    Article  CAS  PubMed  Google Scholar 

  57. Mohammed, S. A., Khan, R. A., El-Readi, M. Z., Emwas, A.-H., Sioud, S., Poulson, B. G., Jaremko, M., Eldeeb, H. M., Al-Omar, M. S., & Mohammed, H. A. (2020). Suaeda vermiculata aqueous-ethanolic extract-based mitigation of ccl4-induced hepatotoxicity in rats, and hepg-2 and hepg-2/adr cell-lines-based cytotoxicity evaluations. Plants, 9(10), 1291.

    Article  CAS  PubMed Central  Google Scholar 

  58. Lin, S. Y., Dan, X., Du, X. X., Ran, C. L., Lu, X., Ren, S. J., Tang, Z. T., Yin, L. Z., He, C. L., Yuan, Z. X., Fu, H. L., Zhao, X. L. and Shu, G. (2019). Protective effects of salidroside against carbon tetrachloride (CCl4)-induced liver injury by initiating mitochondria to resist oxidative stress in mice. International Journal of Molecular Sciences, 20(13), https://doi.org/10.3390/ijms20133187.

  59. Nitha, B., Fijesh, P., & Janardhanan, K. (2013). Hepatoprotective activity of cultured mycelium of Morel mushroom Morchella esculenta. Experimental and Toxicologic Pathology, 65(1–2), 105–112.

    Article  CAS  PubMed  Google Scholar 

  60. Afonso, M. S., Machado, R. M., Lavrador, M. S., Quintao, E. C. R., Moore, K. J. and Lottenberg, A. M. (2018). Molecular pathways underlying cholesterol homeostasis. Nutrients, 10(6).

  61. Wang, D., Yin, Z., Ma, L., Han, L., Chen, Y., Pan, W., Gong, K., Gao, Y., Yang, X. and Chen, Y. (2021). Polysaccharide MCP extracted from Morchella esculenta reduces atherosclerosis in LDLR-deficient mice. Food & Function, https://doi.org/10.1039/D0FO03475D.

  62. Li, Y., Yuan, Y., Lei, L., Li, F., Zhang, Y., Chen, J., Zhao, G., Wu, S., Yin, R., & Ming, J. (2017). Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats. Carbohydrate Polymers, 172, 85–92.

    Article  CAS  PubMed  Google Scholar 

  63. Khan, T., Date, A., Chawda, H., & Patel, K. (2019). Polysaccharides as potential anticancer agents—A review of their progress. Carbohydrate Polymers, 210, 412–428.

    Article  CAS  PubMed  Google Scholar 

  64. Liu, C., Sun, Y., Mao, Q., Guo, X., Li, P., Liu, Y., & Xu, N. (2016). Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. International Journal of Molecular Sciences, 17(6), 986.

    Article  PubMed Central  Google Scholar 

  65. Zhao, K., Jin, M., Chen, Q., & Zheng, P.-S. (2015). Polysaccharides produced by Enterobacter cloacae induce apoptosis in cervical cancer cells. International Journal of Biological Macromolecules, 72, 960–964.

    Article  CAS  PubMed  Google Scholar 

  66. Duncan, C. J., Pugh, N., Pasco, D. S., & Ross, S. A. (2002). Isolation of a galactomannan that enhances macrophage activation from the edible fungus Morchella esculenta. Journal of Agricultural and Food Chemistry, 50(20), 5683–5685.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (31700015), Fundamental Research Funds for the Central Universities (JZ2018HGTB0244) and Anhui Natural Science Foundation (1808085QC66).

Author information

Authors and Affiliations

Authors

Contributions

Haishan Wu: investigation of literature, Jing Chen: investigation and analysis, Jinglei Li: conceptualization, supervision and funding acquisition, Yuting Liu: writing and editing, Hyun Jin Park: review and editing, Liu Yang: conceptualization, methodology and writing.

Corresponding authors

Correspondence to Jinglei Li or Liu Yang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agree to publish this paper when accepted.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haishan Wu and Jing Chen contribute equally to this work as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Chen, J., Li, J. et al. Recent Advances on Bioactive Ingredients of Morchella esculenta. Appl Biochem Biotechnol 193, 4197–4213 (2021). https://doi.org/10.1007/s12010-021-03670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03670-1

Keywords

Navigation