Skip to main content

Advertisement

Log in

Destressing Yeast for Higher Biofuel Yields: Can Excess Chaotropicity Be Mitigated?

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofuels have the capacity to contribute to carbon dioxide emission reduction and to energy security as oil reserves diminish and/or become concentrated in politically unstable regions. However, challenges exist in obtaining the maximum yield from industrial fermentations. One challenge arises from the nature of alcohols. These compounds are chaotropic (i.e. causes disorder in the system) which causes stress in the microbes producing the biofuel. Brewer’s yeast (Saccharomyces cerevisiae) typically cannot grow at ethanol concentration much above 17% (v/v). Mitigation of these properties has the potential to increase yield. Previously, we have explored the effects of chaotropes on model enzyme systems and attempted (largely unsuccessfully) to offset these effects by kosmotropes (compounds which increase the order of the system, i.e. the “opposite” of chaotropes). Here we present some theoretical results which suggest that high molecular mass polyethylene glycols may be the most effective kosmotropic additives in terms of both efficacy and cost. The assumptions and limitations of these calculations are also presented. A deeper understanding of the effects of chaotropes on biofuel-producing microbes is likely to inform improvements in bioethanol yields and enable more rational approaches to the “neutralisation” of chaotropicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. das Neves, M. A., Kimura, T., Shimizu, N., & Nakajima, M. (2007). State of the art and future trends of bioethanol production. Dynam Biochem Proc Biotechnol Mol Biol, 1(1), 1–14.

    Google Scholar 

  2. Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003.

    Article  Google Scholar 

  3. Paulino de Souza, J., Dias do Prado, C., ECA, E., Bonatto, D., Malavazi, I., & Ferreira da Cunha, A. (2018). Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biol, 122(6), 583–591. https://doi.org/10.1016/j.funbio.2017.12.006.

    Article  CAS  Google Scholar 

  4. Banerjee, A. (2011). Food, feed, fuel: transforming the competition for grains. Dev Change, 42(2), 529–557.

    Article  Google Scholar 

  5. Prasad, R. K., Chatterjee, S., Mazumder, P. B., Gupta, S. K., Sharma, S., Vairale, M. G., Datta, S., Dwivedi, S. K., & Gupta, D. K. (2019). Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere, 231, 588–606. https://doi.org/10.1016/j.chemosphere.2019.05.142.

    Article  CAS  Google Scholar 

  6. Timson, D. J. (2020). The roles and applications of chaotropes and kosmotropes in industrial fermentation processes. World J Microbiol Biotechnol, 36(6), 89. https://doi.org/10.1007/s11274-020-02865-8.

    Article  CAS  Google Scholar 

  7. Cray, J. A., Stevenson, A., Ball, P., Bankar, S. B., Eleutherio, E. C., Ezeji, T. C., Singhal, R. S., Thevelein, J. M., Timson, D. J., & Hallsworth, J. E. (2015). Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol, 33, 228–259. https://doi.org/10.1016/j.copbio.2015.02.010.

    Article  CAS  Google Scholar 

  8. Cray, J. A., Russell, J. T., Timson, D. J., Singhal, R. S., & Hallsworth, J. E. (2013). A universal measure of chaotropicity and kosmotropicity. Environ Microbiol, 15(1), 287–296. https://doi.org/10.1111/1462-2920.12018.

    Article  CAS  Google Scholar 

  9. Bennion, B. J., & Daggett, V. (2003). The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci U S A, 100(9), 5142–5147. https://doi.org/10.1073/pnas.0930122100.

    Article  CAS  Google Scholar 

  10. Das, A., & Mukhopadhyay, C. (2009). Urea-mediated protein denaturation: A consensus view. J Phys Chem B, 113(38), 12816–12824. https://doi.org/10.1021/jp906350s.

    Article  CAS  Google Scholar 

  11. Ball, P., & Hallsworth, J. E. (2015). Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys, 17(13), 8297–8305. https://doi.org/10.1039/c4cp04564e.

    Article  CAS  Google Scholar 

  12. Salvi, G., De Los, R. P., & Vendruscolo, M. (2005). Effective interactions between chaotropic agents and proteins. Proteins, 61(3), 492–499. https://doi.org/10.1002/prot.20626.

    Article  CAS  Google Scholar 

  13. Duitama, J., Sánchez-Rodríguez, A., Goovaerts, A., Pulido-Tamayo, S., Hubmann, G., Foulquié-Moreno, M. R., Thevelein, J. M., Verstrepen, K. J., & Marchal, K. (2014). Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genomics, 15(1), 207. https://doi.org/10.1186/1471-2164-15-207.

    Article  CAS  Google Scholar 

  14. Swinnen, S., Schaerlaekens, K., Pais, T., Claesen, J., Hubmann, G., Yang, Y., Demeke, M., Foulquié-Moreno, M. R., Goovaerts, A., Souvereyns, K., Clement, L., Dumortier, F., & Thevelein, J. M. (2012). Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res, 22(5), 975–984. https://doi.org/10.1101/gr.131698.111.

    Article  CAS  Google Scholar 

  15. Wu, H., Zheng, X., Araki, Y., Sahara, H., Takagi, H., & Shimoi, H. (2006). Global gene expression analysis of yeast cells during sake brewing. Appl Environ Microbiol, 72(11), 7353–7358. https://doi.org/10.1128/aem.01097-06.

    Article  CAS  Google Scholar 

  16. Cheng, N., Koda, K., Tamai, Y., Yamamoto, Y., Takasuka, T. E., & Uraki, Y. (2017). Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresource Technology, 232, 126–132. https://doi.org/10.1016/j.biortech.2017.02.018.

    Article  CAS  Google Scholar 

  17. El-Dalatony, M. M., Kurade, M. B., Abou-Shanab, R. A. I., Kim, H., Salama, E.-S., & Jeon, B.-H. (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98–105. https://doi.org/10.1016/j.biortech.2016.07.113.

    Article  CAS  Google Scholar 

  18. Shadbahr, J., Khan, F., & Zhang, Y. (2017). Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol. Energy Conversion and Management, 141, 236–243. https://doi.org/10.1016/j.enconman.2016.08.025.

    Article  CAS  Google Scholar 

  19. Guerrero, A. B., Ballesteros, I., & Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel, 213, 176–185. https://doi.org/10.1016/j.fuel.2017.10.105.

    Article  CAS  Google Scholar 

  20. Zeng, G., You, H., Wang, K., Jiang, Y., Bao, H., Du, M., Chen, B., Ai, N., & Gu, Z. (2019). Semi-simultaneous saccharification and fermentation of ethanol production from Sargassum horneri and biosorbent production from fermentation residues. Waste and Biomass Valorization, 1–13.

  21. Jugwanth, Y., Sewsynker-Sukai, Y., & Gueguim Kana, E. B. (2020). Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 262, 116552. https://doi.org/10.1016/j.fuel.2019.116552.

    Article  CAS  Google Scholar 

  22. Chang, Y.-H., Chang, K.-S., Chen, C.-Y., Hsu, C.-L., Chang, T.-C., & Jang, H.-D. (2018). Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation, 4(2), 45.

    Article  Google Scholar 

  23. Rangel, D. E. N., Finlay, R. D., Hallsworth, J. E., Dadachova, E., & Gadd, G. M. (2018). Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biology, 122(6), 602–612. https://doi.org/10.1016/j.funbio.2018.02.002.

    Article  Google Scholar 

  24. Cray, J. A., Bell, A. N., Bhaganna, P., Mswaka, A. Y., Timson, D. J., & Hallsworth, J. E. (2013). The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol, 6(5), 453–492. https://doi.org/10.1111/1751-7915.12027.

    Article  Google Scholar 

  25. Winogradsky, S. (1924). Sur la microflora autochtone de la terre arable. Comptes rendus hebdomadaires des seances de l’Academie des Sciences (Paris) D, 178, 1236–1239.

    Google Scholar 

  26. Winogradsky, S. (1949). Microbiologie du sol: problemes et methodes. Cinquante ans de recherches: Masson.

    Google Scholar 

  27. Atlas, R. M., & Bartha, R. (1987). Microbial ecology: Fundamentals and applications. Menlo Park: The Benjamim. Cummings Publ.

    Google Scholar 

  28. Aertsen, A., & Michiels, C. W. (2005). Diversify or die: Generation of diversity in response to stress. Critical reviews in microbiology, 31(2), 69–78.

    Article  Google Scholar 

  29. Hallsworth, J. E. (2018). Stress-free microbes lack vitality. Fungal Biol, 122(6), 379–385. https://doi.org/10.1016/j.funbio.2018.04.003.

    Article  CAS  Google Scholar 

  30. Walker, G. M., & Basso, T. O. (2019). Mitigating stress in industrial yeasts. Fungal Biology., 124(5), 387–397. https://doi.org/10.1016/j.funbio.2019.10.010.

    Article  CAS  Google Scholar 

  31. Yancey, P. H., & Somero, G. N. (1979). Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochemical Journal, 183(2), 317–323. https://doi.org/10.1042/bj1830317.

    Article  CAS  Google Scholar 

  32. Eardley, J., Dedi, C., Dymond, M., Hallsworth, J. E., & Timson, D. J. (2019). Evidence for chaotropicity/kosmotropicity offset in a yeast growth model. Biotechnol Lett, 41(11), 1309–1318. https://doi.org/10.1007/s10529-019-02737-8.

    Article  CAS  Google Scholar 

  33. Wang, P.-M., Zheng, D.-Q., Chi, X.-Q., Li, O., Qian, C.-D., Liu, T.-Z., Zhang, X.-Y., Du, F.-G., Sun, P.-Y., Qu, A.-M., & Wu, X.-C. (2014). Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresource Technology, 152, 371–376. https://doi.org/10.1016/j.biortech.2013.11.033.

    Article  CAS  Google Scholar 

  34. Mansure, J. J. C., Panek, A. D., Crowe, L. M., & Crowe, J. H. (1994). Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1191(2), 309–316. https://doi.org/10.1016/0005-2736(94)90181-3.

    Article  CAS  Google Scholar 

  35. Zhang, L., Lang, Y., Wang, C., & Nagata, S. (2008). Promoting effect of compatible solute ectoine on the ethanol fermentation by Zymomonas mobilis CICC10232. Process Biochemistry, 43(6), 642–646. https://doi.org/10.1016/j.procbio.2008.02.003.

    Article  CAS  Google Scholar 

  36. Takagi, H. (2008). Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Applied Microbiology and Biotechnology, 81(2), 211–223. https://doi.org/10.1007/s00253-008-1698-5.

    Article  CAS  Google Scholar 

  37. Di Michele, A., Freda, M., Onori, G., & Santucci, A. (2004). Hydrogen bonding of water in aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol: A near-infrared spectroscopy study. The Journal of Physical Chemistry A, 108(29), 6145–6150. https://doi.org/10.1021/jp0494990.

    Article  CAS  Google Scholar 

  38. Fornili, A., Civera, M., Sironi, M., & Fornili, S. L. (2003). Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol. Physical Chemistry Chemical Physics, 5(21), 4905–4910. https://doi.org/10.1039/B308248B.

    Article  CAS  Google Scholar 

  39. Mahipant, G., Paemanee, A., Roytrakul, S., Kato, J., & Vangnai, A. S. (2017). The significance of proline and glutamate on butanol chaotropic stress in Bacillus subtilis 168. Biotechnology for Biofuels, 10(1), 122. https://doi.org/10.1186/s13068-017-0811-3.

    Article  CAS  Google Scholar 

  40. Bell, A. N., Magill, E., Hallsworth, J. E., & Timson, D. J. (2013). Effects of alcohols and compatible solutes on the activity of β-galactosidase. Appl Biochem Biotechnol, 169(3), 786–794. https://doi.org/10.1007/s12010-012-0003-3.

    Article  CAS  Google Scholar 

  41. Fox-Powell, M. G., Hallsworth, J. E., Cousins, C. R., & Cockell, C. S. (2016). Ionic strength is a barrier to the habitability of Mars. Astrobiology, 16(6), 427–442. https://doi.org/10.1089/ast.2015.1432.

    Article  CAS  Google Scholar 

  42. Yakimov, M. M., La Cono, V., Spada, G. L., Bortoluzzi, G., Messina, E., Smedile, F., Arcadi, E., Borghini, M., Ferrer, M., Schmitt-Kopplin, P., Hertkorn, N., Cray, J. A., Hallsworth, J. E., Golyshin, P. N., & Giuliano, L. (2015). Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol, 17(2), 364–382. https://doi.org/10.1111/1462-2920.12587.

    Article  CAS  Google Scholar 

  43. de Lima, A. F., Stevenson, A., Baxter, E., Gillion, J. L., Hejazi, F., Hayes, S., Morrison, I. E., Prior, B. A., McGenity, T. J., Rangel, D. E., Magan, N., Timmis, K. N., & Hallsworth, J. E. (2015). Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: Compatible solutes determine the biotic window. Curr Genet, 61(3), 457–477. https://doi.org/10.1007/s00294-015-0496-8.

    Article  CAS  Google Scholar 

  44. Bhaganna, P., Volkers, R. J., Bell, A. N., Kluge, K., Timson, D. J., McGrath, J. W., Ruijssenaars, H. J., & Hallsworth, J. E. (2010). Hydrophobic substances induce water stress in microbial cells. Microb Biotechnol, 3(6), 701–716. https://doi.org/10.1111/j.1751-7915.2010.00203.x.

    Article  CAS  Google Scholar 

  45. Casanova-Morales, N., Alavi, Z., Wilson, C. A. M., & Zocchi, G. (2018). Identifying chaotropic and kosmotropic agents by nanorheology. J Phys Chem B, 122(14), 3754–3759. https://doi.org/10.1021/acs.jpcb.7b12782.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DJT acknowledges his long-standing collaboration with Dr John E Hallsworth (Queen’s University, Belfast, UK) who first encouraged him to think about problems of chaotropicity in cellular systems. We thank Dr Samantha Banford for her assistance with the revised version of this paper.

Funding

JE is a recipient of a PhD studentship from the University of Brighton and the Universities Alliance Doctoral Training Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This commentary is based in part on a presentation given at The International Conference on Energy and Sustainable Futures (ICESF), Nottingham, UK, in September 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timson, D.J., Eardley, J. Destressing Yeast for Higher Biofuel Yields: Can Excess Chaotropicity Be Mitigated?. Appl Biochem Biotechnol 192, 1368–1375 (2020). https://doi.org/10.1007/s12010-020-03406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03406-7

Keywords

Navigation