Skip to main content
Log in

Plant Growth-Promoting Active Metabolites from Frankia spp. of Actinorhizal Casuarina spp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In agriculture, plant growth enrichment via plant growth stimulating microbes has been recognized as an emergency, it is used as an alternatives to chemical pesticides and growth stimulants. The phytopathogens cause various diseases such as blister bark; stem cankers, and pink and brown rot diseases besides affect the growth frequency of Casuarina spp. toward biotic and abiotic stresses. Bio-control and plant growth-promoting potential of native Frankia isolates from Casuarina spp. in Tamil Nadu, India, was not much explored. Hence, in the present study, we are investigating the plant growth improvement activity and phytopathogen control in Casuarina spp. The Frankia sp. DDNSF-01 and Frankia casuarinae DDNSF-02 were isolated and identified from the root nodules of Casuarina spp. Additionally, it is recognized for plant growth promoter activity and in vitro antimicrobial activity against phytopathogens including Pseudomonas sp. and Colletotrichum sp. The plant growth regulators including IAA, siderophore, ammonia production, and phosphate solubilization were found out. Therefore, the formation of the most significant plant growth-promoting phytohormone IAA was confirmed by UV, FT-IR, TLC, HPLC, HPTLC, and NMR spectrum. Bioactive metabolites including methyl 4-hydroxybenzoate, dodecanoic acid, and some novel flavonoids were identified. Therefore, various growth regulators such as l-aspartic acid, 1H-indole-3-carboxaldehyde were confirmed by GC-MS spectra. The present findings conclude Frankia spp. as efficient plant growth enhancement mediator and also inhibit the phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alloisio, N., Queiroux, C., Fournier, P., Pujic, P., Normand, P., Vallenet, D., & Kucho, K. I. (2010). The Frankia alni symbiotic transcriptome. Molecular Plant-Microbe Interactions, 23(5), 593–607.

    Article  CAS  Google Scholar 

  2. Chaia, E. E., Wall, L. G., & Huss-Danell, K. (2010). Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis, 51(3), 201–226.

    Article  Google Scholar 

  3. Tisa, L. S., Beauchemin, N., Gtari, M., Sen, A., & Wall, L. G. (2013). What stories can the Frankia genomes start to tell us. Journal of Biosciences, 38(4), 719–726.

    Article  Google Scholar 

  4. Kucho, K. I., Tamari, D., Matsuyama, S., Nabekura, T., & Tisa, L. S. (2017). Nitrogen fixation mutants of the actinobacterium Frankia casuarinae CcI3. Microbes and Environments, 32(4) 344-351. https://doi.org/10.1264/jsme2.ME17099.

  5. Mastronunzio, J. E., & Benson, D. R. (2010). Wild nodules can be broken: Proteomics of Frankia in field-collected root nodules. Symbiosis, 50(1–2), 13–26.

    Article  CAS  Google Scholar 

  6. Oshone, R., Ngom, M., Chu, F., Mansour, S., Sy, M. O., Champion, A., & Tisa, L. S. (2017). Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics, 18(1), 633.

    Article  Google Scholar 

  7. Gtari, M., Ghodhbane-Gtari, F., Nouioui, I., Ktari, A., Hezbri, K., Mimouni, W., & Tisa, L. S. (2015). Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Scientific Reports, 5, 13112.

    Article  CAS  Google Scholar 

  8. Mansour, S. R. (2003). Survival of Frankia strains under different soil conditions. Journal of Biological Sciences, 3, 618–626.

    Article  Google Scholar 

  9. Udwary, D. W., Gontang, E. A., Jones, A. C., Jones, C. S., Schultz, A. W., Winter, J. M., & Esquenazi, E. (2011). Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Applied and Environmental Microbiology, 77(11), 3617–3625.

    Article  CAS  Google Scholar 

  10. Ghodhbane-Gtari, F., Beauchemin, N., Bruce, D., Chain, P., Chen, A., Davenport, K. W., & Gtari, M. (2013). Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod) ineffective (Fix) isolate from Coriaria nepalensis. Genome Announcements, 1(2), e00085–e00013.

    Article  Google Scholar 

  11. Karthikeyan, A., Deeparaj, B., & Nepolean, P. (2009). Reforestation in bauxite mine spoils with Casuarina equisetifolia frost. and beneficial microbes. Forests, Trees and Livelihoods, 19(2), 153–165.

    Article  Google Scholar 

  12. Schwencke, J., & Caru, M. (2001). Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Research and Management, 15(4), 285–327.

    Article  CAS  Google Scholar 

  13. Obertello, M., Sy, M. O., Laplaze, L., Santi, C., Svistoonoff, S., Auguy, F., & Franche, C. (2003). Actinorhizal nitrogen fixing nodules: infection process, molecular biology and genomics. African Journal of Biotechnology, 2(12), 528–538.

    Article  CAS  Google Scholar 

  14. Pawlowski, K., & Demchenko, K. N. (2012). The diversity of actinorhizal symbiosis. Protoplasma, 249(4), 967–979.

    Article  Google Scholar 

  15. Perrine-Walker, F., Gherbi, H., Imanishi, L., Hocher, V., Ghodhbane-Gtari, F., Lavenus, J., & Laplaze, L. (2011). Symbiotic signaling in actinorhizal symbioses. Current Protein and Peptide Science, 12(2), 156–164.

    Article  CAS  Google Scholar 

  16. Peret, B., Swarup, R., Jansen, L., Devos, G., Auguy, F., Collin, M., & Bennett, M. (2007). Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiology, 144(4), 1852–1862.

    Article  CAS  Google Scholar 

  17. Persello Cartieaux, F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: molecular plant–rhizobacteria interactions. Plant, Cell & Environment, 26(2), 189–199.

    Article  CAS  Google Scholar 

  18. Lugtenberg, B. J., Chin-A-Woeng, T. F., & Bloemberg, G. V. (2002). Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81(1–4), 373–383.

    Article  CAS  Google Scholar 

  19. Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Current Microbiology, 58(4), 371–377.

    Article  CAS  Google Scholar 

  20. Dey, R. K. K. P., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159(4), 371–394.

    Article  CAS  Google Scholar 

  21. Duro, N., Batista-Santos, P., Da Costa, M., Maia, R., Castro, I. V., Ramos, M., & Ribeiro-Barros, A. (2016). The impact of salinity on the symbiosis between Casuarina glauca Sieb. ex Spreng. and N 2-fixing Frankia bacteria based on the analysis of nitrogen and carbon metabolism. Plant and Soil, 398(1–2), 327–337.

    Article  CAS  Google Scholar 

  22. Sadeghi, A., Karimi, E., Dahaji, P. A., Javid, M. G., Dalvand, Y., & Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28(4), 1503–1509.

    Article  CAS  Google Scholar 

  23. Devi, K. A., Pandey, G., Rawat, A. K. S., Sharma, G. D., & Pandey, P. (2017). The endophytic symbiont - Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Frontiers in Microbiology, 8, 1897.

    Article  Google Scholar 

  24. Li, J. F., Zhang, S. Q., Huo, P. H., Shi, S. L., & Miao, Y. Y. (2013). Effect of phosphate solubilizing rhizobium and nitrogen fixing bacteria on growth of alfalfa seedlings under P and N deficient conditions. Pakistan Journal of Botany, 45(5), 1557–1562.

    Google Scholar 

  25. Mittal, V., Singh, O., Nayyar, H., Kaur, J., & Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40(3), 718–727.

    Article  CAS  Google Scholar 

  26. Verma, J. P., Jaiswal, D. K., & Maurya, P. K. (2016). Screening of bacterial strains for developing effective pesticide-tolerant plant growth-promoting microbial consortia from rhizosphere soils of vegetable fields of eastern Uttar Pradesh, India. Energy, Ecology and Environment, 1(6), 408–418.

    Article  Google Scholar 

  27. Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649.

    Google Scholar 

  28. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2), 71–79.

    Article  Google Scholar 

  29. Sen, A., & Batra, A. (2012). Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. International Journal of Current Pharmaceutical Research, 4(2), 67–73.

    Google Scholar 

  30. Solans, M., Vobis, G., Cassan, F., Luna, V., & Wall, L. G. (2011). Production of phytohormones by root-associated saprophytic actinobacteria isolated from the actinorhizal plant Ochetophila trinervis. World Journal of Microbiology and Biotechnology, 27(9), 2195–2202.

    Article  CAS  Google Scholar 

  31. Ambawade, M. S., & Pathade, G. R. (2013). Production of indole acetic acid (IAA) by Stenotrophomonas maltophilia BE25 isolated from roots of banana (Musa spp). International Journal of Science and Research, 4(1), 2644–2650.

    Google Scholar 

  32. Loescher, C. M., Morton, D. W., Razic, S., & Agatonovic-Kustrin, S. (2014). High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis-advantages and limitations. Journal of Pharmaceutical and Biomedical Analysis, 98, 52–59.

    Article  CAS  Google Scholar 

  33. Dar, A. I., Saleem, F., Ahmad, M., Tariq, M., Khan, A., Ali, A., & Nasir, I. A. (2014). Characterization and efficiency assessment of PGPR for enhancement of rice (Oryza sativa L.) yield. Advancements in Life Sciences, 2(1), 38–45.

    Google Scholar 

  34. Malarvizhi, D., Karthikeyan, A. V. P., Sudan, I., & Satheeshkumar, R. (2019). Phytochemical analysis of Commelina diffusa Burm. F. through GC-MS method. Journal of Pharmacognosy and Phytochemistry, 8(1), 376–379.

    CAS  Google Scholar 

  35. Buensateai, N., Thumanu, K., Sompong, M., Athinuwat, D., & Prathuangwong, S. (2012). The FT-IR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007.

  36. Pattnaik, S., Rajkumari, J., Paramanandham, P., & Busi, S. (2017). Indole acetic acid production and growth-promoting activity of Methylobacterium extorquens MP1 and Methylobacterium zatmanii MS4 in tomato. International Journal of Vegetable Science, 23(4), 321–330.

    Article  Google Scholar 

  37. Kai, K., Nakamura, S., Wakasa, K., & Miyagawa, H. (2007). Facile preparation of deuterium-labeled standards of indole-3-acetic acid (IAA) and its metabolites to quantitatively analyze the disposition of exogenous IAA in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 0707060476-0707060476.

  38. Kotasthane, A. S., Agrawal, T., Zaidi, N. W., & Singh, U. S. (2017). Identification of siderophore producing and cyanogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agents for collar rot of chickpea. 3 Biotech, 7(2), 137 https://doi.org/10.1007/s13205-017-0761-2.

  39. Sah, S., Singh, N., & Singh, R. (2017). Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech, 7(2), 121.

    Article  Google Scholar 

  40. Froussart, E., Bonneau, J., Franche, C., & Bogusz, D. (2016). Recent advances in actinorhizal symbiosis signaling. Plant Molecular Biology, 90(6), 613–622. https://doi.org/10.1007/s11103-016-0450-2.

  41. Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7(2), 102.

    Article  Google Scholar 

  42. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). NMR-based metabolomic analysis of plants. Nature Protocols, 5(3), 536.

    Article  CAS  Google Scholar 

  43. Kamnev, A. A. (2008). FT-IR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling. Journal of Spectroscopy, 22(2–3), 83–95.

    Article  CAS  Google Scholar 

  44. Ruanpanun, P., Tangchitsomkid, N., Hyde, K. D., & Lumyong, S. (2010). Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 26(9), 1569–1578.

    Article  CAS  Google Scholar 

  45. Apine, O. A., & Jadhav, J. P. (2011). Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. Journal of Aapplied Microbiology, 110(5), 1235–1244.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Bharathidasan University for the award fellowship (URF) (02492/URF/K7/2016). DST-FIST (Department of Science and Technology- Fund for improvement of S&T infrastructure), New Delhi (DST Sanction Order No.: SR/FIST/LSI-013/ 2012/Dt.13.08.2012). Thanks to Pondicherry University, Puducherry-605014, India, for providing HPLC and NMR spectrum analysis facility.

Funding

This work was supported by Research Foundation of Bharathidasan University ((URF) (02492/URF/K7/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanasekaran Dharumadurai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB2019 is Narayanasamy Marappa

Session 42: YSC Agricultural & Biopharmaceutical (I), S42-07, Reference No. O02-008.

Email ID: sam16@bdu.ac.in, ORCID ID https://orcid.org/0000-0002-2812-4721

Electronic supplementary material

ESM 1

(DOC 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marappa, N., Ramachandran, L., Dharumadurai, D. et al. Plant Growth-Promoting Active Metabolites from Frankia spp. of Actinorhizal Casuarina spp.. Appl Biochem Biotechnol 191, 74–91 (2020). https://doi.org/10.1007/s12010-020-03243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03243-8

Keywords

Navigation