Skip to main content
Log in

Polylactic Acid (PLA) Modified by Polyethylene Glycol (PEG) for the Immobilization of Lipase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work presents a novel lipase immobilization method via polylactic acid (PLA) modified by polyethylene glycol (PEG). The immobilization performance of lipase was characterized by SEM and FTIR. The results indicated that lipase from Candida rugosa type VII was successfully immobilized on the biocompatible PLA/PEG film in the presence of 1, 6-hexamethylene diamine and glutaraldehyde. In addition, the presence of 1, 6-hexylenediamime (8%, w/w) could maintain the maximum enzymatic activity. Moreover, the optimum temperature of lipase shifted from 45 to 50 °C after immobilization. The thermal inactivation experiment illustrated that the immobilized lipase retained up to 63% of the original activity after treated at 50 °C in buffer for 120 min, significantly higher than that of the control (33%) (p < 0.05). The optimum pH value of the immobilized lipase shifted from 6.5 to 7.5. Additionally, compared with the free lipase maintaining 23% of its original activity, the immobilized lipase successfully retained up to 70% after 30 days of storage. Furthermore, the immobilized lipase displayed the excellent reusability of 82% after six cycles. In conclusion, the proposed immobilization approach developed can be potentially used as a sustainable alternative for the immobilization of lipases and the utilization of biocompatible polymer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arias, V., Odelius, K., Höglund, A., & Albertsson, A.-C. (2015). Homocomposites of polylactide (PLA) with induced interfacial stereocomplex crystallites. ACS Sustainable Chemistry & Engineering, 3, 2220–2231.

    Article  CAS  Google Scholar 

  2. Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9, 552–571.

    Article  CAS  Google Scholar 

  3. Tran, T. P. T., Bénézet, J.-C., & Bergeret, A. (2014). Rice and Einkorn wheat husks reinforced poly (lactic acid)(PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Industrial Crops and Products, 58, 111–124.

    Article  CAS  Google Scholar 

  4. Tawakkal, I. S., Cran, M. J., & Bigger, S. W. (2014). Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Industrial Crops and Products, 61, 74–83.

    Article  CAS  Google Scholar 

  5. Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4, 2899–2916.

    Article  CAS  Google Scholar 

  6. Feu, K. S., Alexander, F., Silva, S., de Moraes Junior, M. A., Corrêa, A. G., & Paixão, M. W. (2014). Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green Chemistry, 16, 3169–3174.

    Article  CAS  Google Scholar 

  7. Hayes, D. G. (2004). Enzyme-catalyzed modification of oilseed materials to produce eco-friendly products. Journal of the American Oil Chemists’ Society, 81, 1077–1103.

    Article  CAS  Google Scholar 

  8. Ye, R., Hayes, D. G., & Burton, R. (2014). Effects of particle size of sucrose suspensions and pre-incubation of enzymes on lipase-catalyzed synthesis of sucrose oleic acid esters. Journal of the American Oil Chemists’ Society, 1–11.

  9. Cheng, C., Jiang, T., Wu, Y., Cui, L., Qin, S., & He, B. (2018). Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment. International Journal of Biological Macromolecules, 119, 1211–1217.

    Article  CAS  Google Scholar 

  10. Dobrev, G., Zhekova, B., Dobreva, V., Strinska, H., Doykina, P., & Krastanov, A. (2015). Lipase biosynthesis by Aspergillus carbonarius in a nutrient medium containing products and byproducts from the oleochemical industry. Biocatalysis and Agricultural Biotechnology, 4, 77–82.

    Article  Google Scholar 

  11. Hemlata, B., Uzma, Z., & Tukaram, K. (2016). Substrate kinetics of thiol activated hyperthermostable alkaline lipase of Bacillus sonorensis 4R and its application in bio-detergent formulation. Biocatalysis and Agricultural Biotechnology, 8, 104–111.

    Article  Google Scholar 

  12. Navvabi, A., Razzaghi, M., Fernandes, P., Karami, L., & Homaei, A. (2018). Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochemistry, 70, 61–70.

    Article  CAS  Google Scholar 

  13. Keng, P., Basri, M., Zakaria, M., Rahman, M., Ariff, A., Rahman, R., & Salleh, A. (2009). Newly synthesized palm esters for cosmetics industry. Industrial Crops and Products, 29, 37–44.

    Article  CAS  Google Scholar 

  14. Hama, S., Noda, H., & Kondo, A. (2018). How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol, 50, 57–64.

    Article  CAS  Google Scholar 

  15. Ye, R., & Hayes, D. G. (2012). Lipase-catalyzed synthesis of saccharide-fatty acid esters utilizing solvent-free suspensions: effect of acyl donors and acceptors, and enzyme activity retention. Journal of the American Oil Chemists’ Society, 89, 455–463.

    Article  CAS  Google Scholar 

  16. Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42, 6406–6436.

    Article  CAS  Google Scholar 

  17. Kim, M. H., An, S., Won, K., Kim, H. J., & Lee, S. H. (2012). Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. Journal of Molecular Catalysis B: Enzymatic, 75, 68–72.

    Article  CAS  Google Scholar 

  18. Orrego, C., Salgado, N., Valencia, J., Giraldo, G., Giraldo, O., & Cardona, C. (2010). Novel chitosan membranes as support for lipases immobilization: characterization aspects. Carbohydrate Polymers, 79, 9–16.

    Article  CAS  Google Scholar 

  19. Maharana, T., Pattanaik, S., Routaray, A., Nath, N., & Sutar, A. K. (2015). Synthesis and characterization of poly(lactic acid) based graft copolymers. Reactive and Functional Polymers, 93, 47–67.

    Article  CAS  Google Scholar 

  20. Dhake, K. P., Karoyo, A. H., Mohamed, M. H., Wilson, L. D., & Bhanage, B. M. (2013). Enzymatic activity studies of Pseudomonas cepacia lipase adsorbed onto copolymer supports containing β-cyclodextrin. Journal of Molecular Catalysis B: Enzymatic, 87, 105–112.

    Article  CAS  Google Scholar 

  21. Mendes, A. A., Oliveira, P. C., Vélez, A. M., Giordano, R. C., Giordano, R. d. L., & de Castro, H. F. (2012). Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. International Journal of Biological Macromolecules, 50, 503–511.

    Article  CAS  Google Scholar 

  22. Badgujar, K. C., & Bhanage, B. M. (2014). Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study. Enzyme and Microbial Technology, 57, 16–25.

    Article  CAS  Google Scholar 

  23. Li, Y., Zhong, N., Cheong, L.-Z., Huang, J., Chen, H., & Lin, S. (2018). Immobilization of Candida antarctica lipase B onto organically-modified SBA-15 for efficient production of soybean-based mono and diacylglycerols. International Journal of Biological Macromolecules, 120, 886–895.

    Article  CAS  Google Scholar 

  24. Akoh, C. C., Lee, G.-C., & Shaw, J.-F. (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39, 513–526.

    Article  CAS  Google Scholar 

  25. Barriuso, J., Vaquero, M. E., Prieto, A., & Martinez, M. J. (2016). Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: a review. Biotechnol Adv, 34, 874–885.

    Article  CAS  Google Scholar 

  26. Chen, Y., Ye, R., Li, X., & Wang, J. (2013). Preparation and characterization of extruded thermoplastic zein-poly (propylene carbonate) film. Industrial Crops and Products, 49, 81–87.

    Article  Google Scholar 

  27. Chen, Y., Ye, R., & Liu, J. (2014). Effects of different concentrations of ethanol and isopropanol on physicochemical properties of zein-based films. Industrial Crops and Products, 53, 140–147.

    Article  Google Scholar 

  28. Chen, Y., Ye, R., & Wang, Y. (2014). Acid- soluble and pepsin-soluble collagens from grass carp (Ctenopharyngodon idella) skin: a comparative study on physicochemical properties. International Journal of Food Science & Technology, 50, 186–193.

    Article  Google Scholar 

  29. Wang, Y., Liu, A., Ye, R., Wang, W., & Li, X. (2015). Transglutaminase-induced crosslinking of gelatin–calcium carbonate composite films. Food Chemistry, 166, 414–422.

    Article  CAS  Google Scholar 

  30. Badgujar, K. C., Dhake, K. P., & Bhanage, B. M. (2013). Immobilization of Candida cylindracea lipase on poly lactic acid, polyvinyl alcohol and chitosan based ternary blend film: characterization, activity, stability and its application for N-acylation reactions. Process Biochemistry, 48, 1335–1347.

    Article  CAS  Google Scholar 

  31. Díaz Ramos, M., Giraldo Gómez, G. I., & Sanabria González, N. (2014). Immobilization of Candida rugosa lipase on bentonite modified with benzyltriethylammonium chloride. Journal of Molecular Catalysis B: Enzymatic, 99, 79–84.

    Article  Google Scholar 

  32. Jun, C., Jeon, B. W., Joo, J. C., Le, Q. A. T., Gu, S.-A., Byun, S., Cho, D. H., Kim, D., Sang, B.-I., & Kim, Y. H. (2013). Thermostabilization of Candida antarctica lipase B by double immobilization: adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification. Process Biochemistry, 48, 1181–1187.

    Article  CAS  Google Scholar 

  33. Reshmi, R., & Sugunan, S. (2013). Superior activities of lipase immobilized on pure and hydrophobic clay supports: characterization and catalytic activity studies. Journal of Molecular Catalysis B: Enzymatic, 97, 36–44.

    Article  CAS  Google Scholar 

  34. Skorupska, K., Lewerenz, H. J., Smith, J. R., Kulesza, P. J., Mernagh, D., & Campbell, S. A. (2011). Macromolecule–semiconductor interfaces: from enzyme immobilization to photoelectrocatalytical applications. Journal of Electroanalytical Chemistry, 662, 169–183.

    Article  CAS  Google Scholar 

  35. Temoçin, Z. (2013). Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Journal of Biomaterials Science, Polymer Edition, 24, 1618–1635.

    Article  Google Scholar 

  36. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  37. An, J. D., Patterson, D. A., McNeil, S., & Hossain, M. M. (2014). Immobilization of lipase on woolen fabrics: enhanced effectiveness in stain removal. Biotechnology Progress, 30, 806–817.

    Article  CAS  Google Scholar 

  38. Ozyilmaz, G., & Gezer, E. (2010). Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel. Journal of Molecular Catalysis B: Enzymatic, 64, 140–145.

    Article  CAS  Google Scholar 

  39. Raghavendra, T., Panchal, N., Divecha, J., Shah, A., & Madamwar, D. (2014). Biocatalytic synthesis of flavor ester ‘pentyl valerate’using Candida rugosa lipase immobilized in microemulsion based organogels: effect of parameters and reusability. BioMed Research International, 1–14.

  40. Ramos, M. D., Gómez, G. I. G., & González, N. S. (2014). Immobilization of Candida rugosa lipase on bentonite modified with benzyltriethylammonium chloride. Journal of Molecular Catalysis B: Enzymatic, 99, 79–84.

    Article  Google Scholar 

  41. Guncheva, M., Paunova, K., Dimitrov, M., & Yancheva, D. (2014). Stabilization of Candida rugosa lipase on nanosized zirconia-based materials. Journal of Molecular Catalysis B: Enzymatic, 108, 43–50.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (31701526), Basic Research Fees of Universities and Colleges in Tianjin (2017KJ001), Youth Teacher Innovation Fund of Tianjin University of Science & Technology (2015LG26), the Open Project Program of State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology (No. SKLFNS-KF-201824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. A novel method via polylactic acid (PLA) modified by polyethylene glycol (PEG) to immobilize lipase was employed.

2. The immobilization performance of lipase films were characterized using SEM and FTIR.

3. Factors affecting enzymatic activity of immobilized lipases such as temperature and pH were studied.

4. The thermal stability, storage stability, and reuse ability of lipases were enhanced after immobilization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhao, S., Hou, Y. et al. Polylactic Acid (PLA) Modified by Polyethylene Glycol (PEG) for the Immobilization of Lipase. Appl Biochem Biotechnol 190, 982–996 (2020). https://doi.org/10.1007/s12010-019-03134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03134-7

Keywords

Navigation