Skip to main content
Log in

In situ Preparation of HNbMoO6/C Nanocomposite for Sensitive Detection of Clenbuterol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, we synthesized HNbMoO6/C composite through the calcination of octylamine-intercalated HNbMoO6 precursor. The resulting HNbMoO6/C composite showed some new phases of MoO2, MoO3, NbO2, Nb2O5, and carbon, which was fully confirmed via powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) technologies. Besides, the HNbMoO6/C hybrid was coated on glass carbon electrode to construct an electrochemical sensor for sensitive determination of clenbuterol. The electrochemical behaviors of clenbuterol on the prepared electrode were tested by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The results showed that the intercalated carbon can act as active sites to accelerate electron transfer. In addition, more exposed surface areas of the HNbMoO6/C composite will facilitate the electrolyte to permeate. The oxidation peak current of clenbuterol was linearly related to its concentration in the range of 1.04 × 10−5 to 7.51 × 10−4 mol L−1, and the determination limit was calculated to be 3.03 × 10−6 mol L−1 (S/N = 3). This sensor exhibits excellent stability, reproducibility, specificity, and good recoveries when applied to monitor clenbuterol in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu, Z. A., Zhou, Y. K., Wang, Y. Y., Cheng, Q., & Wu, K. B. (2012). Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode. Electrochimica Acta, 74, 139–144.

    Article  CAS  Google Scholar 

  2. Lv, C. Z., Xun, Y., Cao, Z., Xie, J. L., Li, D., Liu, G., Yu, L., Feng, Z. M., Yin, Y. L., & Tan, S. Z. (2017). Sensitive determination of toxic clenbuterol in pig meat and pig liver based on a carbon nanopolymer composite. Food Analytical Methods, 10(7), 2252–2261.

    Article  Google Scholar 

  3. Yan, F. F., Zhang, Y. C., Zhang, S., Zhao, J. H., Liu, S. L., He, L. H., Feng, X. Z., Zhang, H. Z., & Zhang, Z. H. (2015). Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchimica Acta, 182(3-4), 855–862.

    Article  CAS  Google Scholar 

  4. Kang, J. Y., Zhang, Y. J., Li, X., Miao, L. J., & Wu, A. G. (2015). A rapid colorimetric sensor of clenbuterol based on cysteamine-modified gold nanoparticles. ACS Applied Materials & Interfaces, 8, 1–5.

    Article  Google Scholar 

  5. Wu, Y. C., Yao, M. W., Fang, X. Y., Yang, Y. C., & Cheng, X. L. (2015). Clenbuterol assay by spectral imaging surface plasmon resonance biosensor system. Applied Biochemistry and Biotechnology, 177(6), 1327–1337.

    Article  CAS  Google Scholar 

  6. Odoardi, S., Castrignano, E., Martello, S., Chiarotti, M., & Strano-Rossi, S. (2015). Determination of anabolic agents in dietary supplements by liquid chromatography-high-resolution mass spectrometry. Food Additives and Contaminants, 32(5), 635–647.

    CAS  PubMed  Google Scholar 

  7. García, I., Sarabia, L., Ortiz, M. C., & Aldama, J. M. (2004). Three-way models and detection capability of a gas chromatography-mass spectrometry method for the determination of clenbuterol in several biological matrices: the 2002/657/EC European decision. Analytica Chimica Acta, 515(1), 55–63.

    Article  Google Scholar 

  8. Thevis, M., Schebalkin, T., Thomas, A., & Schänzer, W. (2005). Quantification of clenbuterol in human plasma and urine by liquid chromatography-tandem mass spectrometry. Chromatographia, 62(7-8), 435–439.

    Article  CAS  Google Scholar 

  9. Ren, X. F., Zhang, F. M., Chen, F. J., & Yang, T. B. (2009). Development of a sensitive monoclonal antibody-based ELISA for the detection of clenbuterol in animal tissues. Food and Agricultural Immunology, 20(4), 333–344.

    Article  CAS  Google Scholar 

  10. Zhai, H. Y., Liu, Z. P., Chen, Z. G., Liang, Z. X., Su, Z. H., & Wang, S. M. (2015). A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sensors and Actuators B: Chemical, 210, 483–490.

    Article  CAS  Google Scholar 

  11. Yang, Y. Y., Zhang, H., Huang, C. S., Yang, D. P., & Jia, N. Q. (2017). Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-Au-PEI-hemin layered nanocomposites. Biosensors & Bioelectronics, 89(Pt 1), 461–467.

    Article  CAS  Google Scholar 

  12. Li, S. J., Shi, Y. F., Liu, L., Song, L. X., Pang, H., & Du, J. M. (2012). Electrostatic self-assembly for preparation of sulfonated graphene/gold nanoparticle hybrids and their application for hydrogen peroxide sensing. Electrochimica Acta, 85, 628–635.

    Article  CAS  Google Scholar 

  13. Zhang, Z. H., Duan, F. H., He, L. H., Peng, D. L., Yan, F. F., Wang, M. H., Zong, W., & Jia, C. X. (2016). Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchimica Acta, 183(3), 1089–1097.

    Article  CAS  Google Scholar 

  14. He, P. L., Wang, Z. Y., Zhang, L. Y., & Yang, W. J. (2009). Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol. Food Chemistry, 112(3), 707–714.

    Article  CAS  Google Scholar 

  15. Jin, X. C., Fang, G. Z., Pan, M. F., Yang, Y. K., Bai, X. Y., & Wang, S. (2018). A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosensors & Bioelectronics, 102, 357–364.

    Article  CAS  Google Scholar 

  16. Ji, R. Y., Chen, S., Xu, W., Qi, Z., Qiu, J. F., & Li, C. R. (2018). A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchimica Acta, 185(4), 209.

    Article  Google Scholar 

  17. Wang, M. J., Xu, J. S., Zhang, X. B., Fan, Z. C., & Tong, Z. W. (2018). Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Applied Biochemistry and Biotechnology, 185(3), 834–846.

    Article  CAS  Google Scholar 

  18. Pan, B. B., Zhao, W. L., Zhang, X. B., Li, J. P., Xu, J. S., Ma, J. J., Liu, L., Zhang, D. E., & Tong, Z. W. (2016). Research on self-assembly of exfoliated perovskite nanosheets (LaNb2O7 -) and cobalt porphyrin utilized for electrocatalytic oxidation of ascorbic acid. RSC Advances, 6(52), 46388–46393.

    Article  CAS  Google Scholar 

  19. Pan, B. B., Ma, J. J., Zhang, X. B., Liu, L., Zhang, D. E., Li, J. P., Yang, M., Zhang, Z. Y., & Tong, Z. W. (2016). Sandwich-structured nanocomposite constructed by fabrication of exfoliation α-ZrP nanosheets and cobalt porphyrin utilized for electrocatalytic oxygen reduction. Microporous and Mesoporous Materials, 223, 213–218.

    Article  CAS  Google Scholar 

  20. Zhang, X. B., Li, D., Yin, F. J., Gong, J. Y., Yang, X. J., Tong, Z. W., & Xu, X. Y. (2014). Characterization of a layered methylene blue/vanadium oxide nanocomposite and its application in a reagentless H2O2 biosensor. Applied Biochemistry and Biotechnology, 172(1), 176–187.

    Article  CAS  Google Scholar 

  21. Shen, P., Zhang, H. T., Liu, H., Xin, J. Y., Fei, L. F., Luo, X. G., Ma, R. Z., & Zhang, S. J. (2015). Core-shell Fe3O4@SiO2@HNbMoO6 nanocomposites: new magnetically recyclable solid acid for heterogeneous catalysis. Journal of Materials Chemistry A, 3(7), 3456–3464.

    Article  CAS  Google Scholar 

  22. He, J., Hu, L. F., Tang, Y., Li, H. Z., Yang, P., & Li, Z. (2014). Adsorption features and photocatalytic oxidation performance of M1/3NbMoO6 (M= Fe, Ce) for ethyl mercaptan. RSC Advances, 4(43), 22334–22341.

    Article  CAS  Google Scholar 

  23. Ji, H. M., Liu, X. L., Liu, Z. J., Yan, B., Chen, L., Xie, Y. F., Liu, C., Hou, W. H., & Yang, G. (2015). In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Advanced Functional Materials, 25(12), 1886–1894.

    Article  CAS  Google Scholar 

  24. Wu, M. S., & Hsu, W. H. (2015). Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors. Journal of Power Sources, 274, 1055–1062.

    Article  CAS  Google Scholar 

  25. Sun, Y. Y., Liu, C., Zan, Y. F., Miao, G., Wang, H., & Kong, L. Z. (2018). Hydrothermal carbonization of microalgae (Chlorococcum sp.) for porous carbons with high Cr (VI) adsorption performance. Applied Biochemistry and Biotechnology, 186(2), 414–424.

    Article  CAS  Google Scholar 

  26. Lv, M. M., Xie, W., Sun, S., Wu, G. M., Zheng, L. R., Chu, S. Q., Gao, C., & Bao, J. (2015). Activated-carbon-supported K-Co-Mo catalysts for synthesis of higher alcohols from syngas. Catalysis Science & Technology, 5(5), 2925–2934.

    Article  CAS  Google Scholar 

  27. Deng, C., Ding, F., Li, X. Y., Guo, Y. F., Ni, W., Yan, H., Sun, K. N., & Yan, Y. M. (2016). Template-preparation of three-dimensional molybdenum phosphide sponge as high performance electrode for hydrogen evolution. Journal of Materials Chemistry A, 4(1), 59–66.

    Article  CAS  Google Scholar 

  28. Chen, H. F., Qian, X. F., Kuwahara, Y., Mori, K., & Yamashita, H. (2015). A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Advanced Materials, 27(31), 4616–4621.

    Article  Google Scholar 

  29. Joshi, T., Senty, T. R., Borisov, P., Bristow, A. D., & Lederman, D. (2015). Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices. Journal of Physics D: Applied Physics, 48(33), 335308–335314.

    Article  Google Scholar 

  30. Xia, X. H., Deng, S. J., Feng, S. S., Wu, J. B., & Tu, J. P. (2017). Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage. Journal of Materials Chemistry A, 5(40), 21134–21139.

    Article  CAS  Google Scholar 

  31. Nedfors, N., Tengstrand, O., Lewin, E., Furlan, A., Eklund, P., Hultman, L., & Jansson, U. (2011). Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surface and Coating Technology, 206(2-3), 354–359.

    Article  CAS  Google Scholar 

  32. Rajesh, Singal, S., & Kotnala, R. K. (2017). Single frequency impedance analysis on reduced graphene oxide screen-printed electrode for biomolecular detection. Applied Biochemistry and Biotechnology, 183, 672–683.

    Article  CAS  Google Scholar 

  33. Zhang, T. T., Lang, Q. L., Yang, D. P., Li, L., Zeng, L. X., Zheng, C., Li, T., Wei, M. D., & Liu, A. H. (2013). Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochimica Acta, 106, 127–134.

    Article  CAS  Google Scholar 

  34. Osman, N. S. E., Thapliyal, N., Alwan, W. S., Karpoormath, R., & Moyo, T. (2015). Synthesis and characterization of Ba0.5Co0.5Fe2O4 nanoparticle ferrites: application as electrochemical sensor for ciprofloxacin. Journal of Materials Science: Materials in Electronics, 26(7), 5097–5105.

    CAS  Google Scholar 

  35. Laviron, E. (1979). General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, 101(1), 19–28.

    Article  CAS  Google Scholar 

  36. Zhang, X. F., Zhao, H., Xue, Y., Wu, Z. J., Zhang, Y., He, Y. J., Li, X. J., & Yuan, Z. B. (2012). Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosensors & Bioelectronics, 34(1), 112–117.

    Article  CAS  Google Scholar 

  37. Boyd, S., Heskamp, H. H., Bovee, T. F. H., Nielen, M. W. F., & Elliott, C. T. (2009). Development, validation and implementation of a receptor based bioassay capable of detecting a broad range of β-agonist drugs in animal feedingstuffs. Analytica Chimica Acta, 637(1-2), 24–32.

    Article  CAS  Google Scholar 

  38. Xu, J. Y., Li, Y., Guo, J. J., Shen, F., Luo, Y. L., & Sun, C. Y. (2014). Fluorescent detection of clenbuterol using fluorophore functionalized gold nanoparticles based on fluorescence resonance energy transfer. Food Control, 46, 67–74.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Fund of Jiangsu Province (BK20161294), HHIT Research Project (Z2015011), Lianyungang Science Project (CG1602), and Huaihai Institute of Technology Graduate Practice Innovation Project (XKYCXX2017-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Tong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhu, M., Wang, Y. et al. In situ Preparation of HNbMoO6/C Nanocomposite for Sensitive Detection of Clenbuterol. Appl Biochem Biotechnol 189, 960–971 (2019). https://doi.org/10.1007/s12010-019-03054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03054-6

Keywords

Navigation