Skip to main content
Log in

Upgrading Pectin Production from Apple Pomace by Acetic Acid Extraction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pectin, as one of the most widely used functional polysaccharide, can be abundantly extracted from apple pomace which is the main by-product of apple juice industry. In the case of 110 min, 10% (w/w) acetic acid (AA), and 100 °C, extraction yield of pectin reached 19.6%. Compared with mineral acid-extracted pectin, the yield, molecular weight, galacturonic acid content, and DE of the AA-extracted pectin were higher while neutral sugars were lower. Furthermore, the AA-extracted pectin solution demonstrated a higher viscosity during the shear rate increased, and a higher G″ modulus than pectin extracted with mineral acid and commercial pectin possibly because of stronger polymer chain interaction, which was reflected in gel textural properties. The green approach for the pectin production, in terms of pectin components was developed from apple pomace using AA that was highly competitive and environmentally friendly process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—a review. Carbohydrate Polymers, 168, 227–239.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, X., Chen, Q., & Xin, L. (2014). Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids, 38, 129–137.

    Article  CAS  Google Scholar 

  3. Colodel, C., Rmdg, B., Tavares, T. M., & Clo, P. (2017). Cell wall polysaccharides from pulp and peel of cubiu: a pectin-rich fruit. Carbohydrate Polymers, 174, 226–234.

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt, U. S., Schütz, L., & Schuchmann, H. P. (2017). Interfacial and emulsifying properties of citrus pectin: interaction of pH, ionic strength and degree of esterification. Food Hydrocolloids, 62, 288–298.

    Article  CAS  Google Scholar 

  5. Chaharbaghi, E., Khodaiyan, F., & Hosseini, S. S. (2017). Optimization of pectin extraction from pistachio green hull as a new source. Carbohydrate Polymers, 173, 107–113.

    Article  CAS  PubMed  Google Scholar 

  6. Ralet, M. C., Bonnin, E., and Thibault, J. F. (2001) Chromatographic study of highly methoxylated lime pectins deesterified by different pectin methyl-esterases, In: Journal of Chromatography B: Biomedical Sciences and Applications, pp 157–166.

  7. Adetunji, L. R., Adekunle, A., Orsat, V., & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: a review. Food Hydrocolloids, 58, 171–178.

    Google Scholar 

  8. Phatak, L., Chang, K. C., & Brown, G. (1988). Isolation and characterization of pectin in sugar-beet pulp. Journal of Food Science, 53(3), 830–833.

    Article  CAS  Google Scholar 

  9. Michel, F., Thibault, J. F., Mercier, C., Heitz, F., & Pouillaude, F. (2010). Extraction and characterization of pectins from sugar beet pulp. Journal of Food Science, 50, 1499–1500.

    Article  Google Scholar 

  10. Wikiera, A., Mika, M., Starzyńska-Janiszewska, A., & Stodolak, B. (2015). Application of celluclast 1.5 L in apple pectin extraction. Carbohydrate Polymers, 134, 251–257.

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava, P., & Malviya, R. (2011). Sources of pectin, extraction and its applications in pharmaceutical industry - an overview. Indian Journal of Natural Product and Resources, 2, 10–18.

    CAS  Google Scholar 

  12. Shan, Q. L., Chin, N. L., & Yusof, Y. A. (2014). Extraction and characterization of pectin from passion fruit peels. Agriculture and Agricultural Science Procedia, 2, 231–236.

    Article  Google Scholar 

  13. Naghshineh, M., Olsen, K., & Georgiou, C. A. (2013). Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chemistry, 136(2), 472–478.

    Article  CAS  PubMed  Google Scholar 

  14. Wikiera, A., Mika, M., & Stodolak, B. (2015). Development of complete hydrolysis of pectins from apple pomace. Food Chemistry, 172, 675–680.

    Article  CAS  PubMed  Google Scholar 

  15. Doesburg, J. J. (2010). Relation between the solubilization of pectin and the fate of organic acids during maturation of apples. Journal of the Science of Food and Agriculture, 8, 206–216.

    Article  Google Scholar 

  16. Nazaruddin, R., Noor Baiti, A. A., Foo, S. C., Tan, Y. N., & Ayob, M. K. (2013). Comparative chemical characteristics of hydrochloric acid- and ammonium oxalate-extracted pectin from roselle (Hibiscus sabdariffa l.) calyces. International Food Research Journal, 20, 281–284.

    CAS  Google Scholar 

  17. Shaha, R. K., Punichelvana, Y. N. A. P., & Afandi, A. (2013). Optimized extraction condition and characterization of pectin from kaffir lime (Citrus hystrix). Research Journal of Agriculture and Forestry Science, 1, 1–11.

    Google Scholar 

  18. Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93–100.

    Article  CAS  PubMed  Google Scholar 

  19. Jia, D., Zhang, J., Lan, R., Yang, H., & Sun, Y. (2013). A simple preparative method for isolation and purification of polysaccharides from mulberry (Morus alba L.) leaves. International Journal of Food Science and Technology, 48(6), 1275–1281.

    Article  CAS  Google Scholar 

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D (2010) Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass, Natl Renew Energy Lab.

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  22. Fischer, M., & Amadò, R. (1994). Changes in the pectic substances of apples during development and postharvest ripening. Part 1: analysis of the alcohol-insoluble residue. Carbohydrate Polymers, 25(3), 161–166.

    Article  CAS  Google Scholar 

  23. Chang, C., Chen, S., & Zhang, L. (2011). Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. Journal of Materials Chemistry, 21(11), 3865–3871.

    Article  CAS  Google Scholar 

  24. Wikiera, A., Mika, M., StarzyńskaJaniszewska, A., & Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate Polymers, 142, 199–205.

    Article  CAS  PubMed  Google Scholar 

  25. Kacurakova, M., Capek, P., Sasinkova, V., Wellner, N., & Ebringerova, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43(2), 195–203.

    Article  CAS  Google Scholar 

  26. Manrique, G. D., & Lajolo, F. M. (2002). FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25(1), 99–107.

    Article  CAS  Google Scholar 

  27. Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, A., & Chauhan, G. S. (2010). Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydrate Polymers, 82(2), 454–459.

    Article  CAS  Google Scholar 

  29. Zhang, H., Yong, X., & Yu, S. (2017). Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresource Technology, 234, 343–349.

    Article  CAS  PubMed  Google Scholar 

  30. Yapo, B. M. (2009). Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Research International, 42(8), 1197–1202.

    Article  CAS  Google Scholar 

  31. Diaz, J. V., Anthon, G. E., & Barrett, D. M. (2007). Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: effects of pH, temperature, and degree of methyl esterification. Journal of Agricultural and Food Chemistry, 55(13), 5131–5136.

    Article  CAS  PubMed  Google Scholar 

  32. Pourbafrani, M., Forgács, G., Horváth, I. S., Niklasson, C., & Taherzadeh, M. J. (2010). Production of biofuels, limonene and pectin from citrus wastes. Bioresource Technology, 101(11), 4246–4250.

    Article  CAS  PubMed  Google Scholar 

  33. Schols, H. A., Posthumus, M. A., & Voragen, A. G. J. (1990). Structural features of hairy regions of pectins isolated from apple juice produced by the liquefaction process. Carbohydrate Research, 206(1), 117–129.

    Article  CAS  Google Scholar 

  34. Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., & Liu, D. (2013). Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 20(1), 222–231.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, L., Cao, J., Huang, J., Cai, Y., & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268–3273.

    Article  CAS  PubMed  Google Scholar 

  36. Nipaporn, S., Leonardmc, S., Renko, D. V., Henka, S., Tanaboon, S., & Alphonsgj, V. (2010). Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocolloids, 24, 35–41.

    Article  CAS  Google Scholar 

  37. Chen, C., Zhang, B., Fu, X., You, L. J., Abbasi, A. M., & Liu, R. H. (2016). The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions. Food Hydrocolloids, 62, 239–250.

    Google Scholar 

Download references

Funding

The research was supported by the China National Key R&D Plan (2016YFD0600803) and the Jiangsu Postgraduate Innovation Fund (SJZZ16-0161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Xu, Y. & Fan, Y. Upgrading Pectin Production from Apple Pomace by Acetic Acid Extraction. Appl Biochem Biotechnol 187, 1300–1311 (2019). https://doi.org/10.1007/s12010-018-2893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2893-1

Keywords

Navigation