Skip to main content

Advertisement

Log in

Therapeutic Potential of DNAzyme Loaded on Chitosan/Cyclodextrin Nanoparticle to Recovery of Chemosensitivity in the MCF-7 Cell Line

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Commonly, acquired resistances to anticancer drug are mediated by overexpression of a membrane-associated protein that encode via multi-drug resistance gene-1 (MDR1). Herein, the mRNA-cleaving DNAzyme that targets the mRNA of MDR1 gene in doxorubicin-resistant breast cancer cell line (MCF-7/DR) loaded on the chitosan β-cyclodextrin complexes was used as a tropical agent. Chitosan/β-cyclodextrin complexes were used to deliver DNAzymes into cancer cells. Determination of the physicochemical characteristics of the particles was done by photon correlation spectroscopy and scanning electron microscopy. The encapsulation efficiency of the complexes was tested by using gel retardation assay. Positively charged nanoparticles interacted with DNAzyme that could perform as an efficient DNAzyme transfection system. The rationale usage of this platform is to sensitize MCF-7/DR to doxorubicin by downregulating the drug-resistance gene MDR1. Results demonstrated a downregulation of MDR1 mRNAs in MCF-7/DR/DNZ by real-time PCR, compared to the MCF-7/DR as control. WST1 assay showed the 22-fold decrease in drug resistance on treated cells 24 h after transfection. Results showed the intracellular accumulation of Rh123 increased in the treated cells with DNAzyme. Results suggested a potential platform in association with chemotherapy drug for cancer therapy and indicated extremely efficient at delivery of DNAzyme in restoring chemosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao, J. (2016). Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacology & Therapeutics, 160, 145–158.

    Article  CAS  Google Scholar 

  2. Huang, Y., & Sadée, W. (2006). Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Letters, 239(2), 168–182.

    Article  CAS  PubMed  Google Scholar 

  3. Smalley, M., Piggott, L., & Clarkson, R. (2013). Breast cancer stem cells: obstacles to therapy. Cancer Letters, 338(1), 57–62.

    Article  CAS  PubMed  Google Scholar 

  4. Motomura, S., Motoji, T., Takanashi, M., Wang, Y. H., Shiozaki, H., Sugawara, I., et al. (1998). Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucleotides. Blood, 91(9), 3163–3171.

    CAS  PubMed  Google Scholar 

  5. Gao P, Zhou G, Zhang Q, Li H, Mu K, Yuan Y, et al. (2006). Reversal MDR in breast carcinoma cells by transfection of ribozyme designed according the secondary structure of mdr1 mRNA. The Chinese Journal of Physiology, 49(2):96.

  6. Du, B., & Shim, J. S. (2016). Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 21(7), 965.

    Article  CAS  PubMed Central  Google Scholar 

  7. Ebrahimian, M., Taghavi, S., Mokhtarzadeh, A., Ramezani, M., & Hashemi, M. (2017). Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Biotechnology and Applied Biochemistry, 183(1), 126–136.

    Article  CAS  Google Scholar 

  8. Thierry, A. R., & Dritschilo, A. (1992). Liposomal delivery of antisense oligodeoxynucleotides. Annals of the New York Academy of Sciences, 660(1), 300–302.

    Article  CAS  PubMed  Google Scholar 

  9. Xing, A. Y., Shi, D. B., Liu, W., Chen, X., Sun, Y. L., Wang, X., et al. (2013). Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Experimental and Molecular Pathology, 94(3), 481–485.

    Article  CAS  PubMed  Google Scholar 

  10. Fokina, A. A., Stetsenko, D. A., & François, J. C. (2015). DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opinion on Biological Therapy, 15(5), 689–711.

    Article  CAS  PubMed  Google Scholar 

  11. Sett, A., Das, S., & Bora, U. (2014). Functional nucleic-acid-based sensors for environmental monitoring. Applied Biochemistry and Biotechnology, 174(3), 1073–1091.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, Z., Yang, L., Sun, L., & Cao, Y. (2012). Use of DNAzymes for cancer research and therapy. Chinese Science Bulletin, 57(26), 3404–3408.

    Article  CAS  Google Scholar 

  13. Nikzad, N., & Karami, Z. (2018). Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling. International Journal of Biological Macromolecules, 115, 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  14. Mahdiannasser, M., & Karami, Z. (2018). An innovative paradigm of methods in microRNAs detection: highlighting DNAzymes, the illuminators. Biosensors & Bioelectronics, 107, 123–144.

    Article  CAS  Google Scholar 

  15. Kuznetsova, M., Fokina, A., Lukin, M., Repkova, M., Venyaminova, A., & Vlassov, V. (2003). Catalytic DNA and RNA for targeting MDR1 mRNA. Nucleosides, Nucleotides & Nucleic Acids, 22(5–8), 1521–1523.

    Article  CAS  Google Scholar 

  16. Dass, C. R., Choong, P. F., & Khachigian, L. M. (2008). DNAzyme technology and cancer therapy: cleave and let die. Molecular Cancer Therapeutics, 7(2), 243–251.

    Article  CAS  PubMed  Google Scholar 

  17. Fokina, A. A., Kuznetsova, M. A., Repkova, M. N., & Venyaminova, A. G. (2004). Two-component 10–23 DNA enzymes. Nucleosides, Nucleotides & Nucleic Acids, 23(6–7), 1031–1035.

    Article  CAS  Google Scholar 

  18. Gao, P., Wei, J. M., Li, P. Y., Zhang, C. J., Jian, W. C., Zhang, Y. H., et al. (2011). Screening of deoxyribozyme with high reversal efficiency against multidrug resistance in breast carcinoma cells. Journal of Cellular and Molecular Medicine, 15(10), 2130–2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karnati, H. K., Yalagala, R. S., Undi, R., Pasupuleti, S. R., & Gutti, R. K. (2014). Therapeutic potential of siRNA and DNAzymes in cancer. Tumor Biology, 35(10), 9505–9521.

    Article  CAS  PubMed  Google Scholar 

  20. Khan, A., Benboubetra, M., Sayyed, P. Z., Wooi Ng, K., Fox, S., Beck, G., et al. (2004). Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. Journal of Drug Targeting, 12(6), 393–404.

    Article  CAS  PubMed  Google Scholar 

  21. Lin Tan, M., Choong, P. F., & Dass, C. R. (2009). DNAzyme delivery systems: getting past first base. Expert Opinion on Drug Delivery, 6(2), 127–138.

    Article  CAS  Google Scholar 

  22. Fokina, A. A., Chelobanov, B. P., Fujii, M., & Stetsenko, D. A. (2017). Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opinion on Drug Delivery, 14(9), 1077–1089.

    Article  CAS  PubMed  Google Scholar 

  23. Li, G. F., Wang, J. C., Feng, X. M., Liu, Z. D., Jiang, C. Y., & Yang, J. D. (2015). Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles. Biotechnology and Applied Biochemistry, 175(7), 3244–3257.

    Article  CAS  Google Scholar 

  24. Alexakis T, Boadi DK, Quong D, Groboillot A, O’neill I, Poncelet D, et al. (1995). Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application. Biotechnology and Applied Biochemistry 50(1):93–106.

  25. Csaba, N., Köping-Höggård, M., & Alonso, M. J. (2009). Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. International Journal of Pharmaceutics, 382(1), 205–214.

    Article  CAS  PubMed  Google Scholar 

  26. Csaba, N., Köping-Höggård, M., Fernandez-Megia, E., Novoa-Carballal, R., Riguera, R., & Alonso, M. J. (2009). Ionically crosslinked chitosan nanoparticles as gene delivery systems: effect of PEGylation degree on in vitro and in vivo gene transfer. Journal of Biomedical Nanotechnology, 5(2), 162–171.

    Article  CAS  PubMed  Google Scholar 

  27. Trapani, A., Garcia-Fuentes, M., & Alonso, M. (2008). Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan. Nanotechnology, 19(18), 185101.

    Article  CAS  PubMed  Google Scholar 

  28. Krauland, A. H., & Alonso, M. J. (2007). Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. International Journal of Pharmaceutics, 340(1-2), 134–142.

    Article  CAS  PubMed  Google Scholar 

  29. Challa, R., Ahuja, A., Ali, J., & Khar, R. K. (2005). Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech, 6(2), E329–EE57.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y., Zhai, Y., Han, X., Liu, X., Liu, W., Wu, C., et al. (2014). Bioadhesive chitosan-coated cyclodextrin-based superamolecular nanomicelles to enhance the oral bioavailability of doxorubicin. Journal of Nanoparticle Research, 16(10), 2587.

    Article  CAS  Google Scholar 

  31. Trapani, A., Lopedota, A., Franco, M., Cioffi, N., Ieva, E., Garcia-Fuentes, M., et al. (2010). A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. European Journal of Pharmaceutics and Biopharmaceutics, 75(1), 26–32.

    Article  CAS  PubMed  Google Scholar 

  32. Thanh Nguyen, H., & Goycoolea, F. M. (2017). Chitosan/cyclodextrin/TPP nanoparticles loaded with quercetin as novel bacterial quorum sensing inhibitors. Molecules, 22(11), 1975.

    Article  CAS  PubMed Central  Google Scholar 

  33. Teijeiro-Osorio, D., Remuñán-López, C., & Alonso, M. J. (2009). Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 71(2), 257–263.

    Article  CAS  PubMed  Google Scholar 

  34. Eslaminejad, T., Nematollahi-Mahani, S. N., & Ansari, M. (2016). Cationic β-cyclodextrin–chitosan conjugates as potential carrier for pmCherry-C1 gene delivery. Molecular Biotechnology, 58(4), 287–298.

    Article  CAS  PubMed  Google Scholar 

  35. AbuHammad, S., & Zihlif, M. (2013). Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line. Genomics, 101(4), 213–220.

    Article  CAS  PubMed  Google Scholar 

  36. Yin, L. M., Wei, Y., Wang, Y., Xu, Y. D., & Yang, Y. Q. (2013). Long term and standard incubations of WST-1 reagent reflect the same inhibitory trend of cell viability in rat airway smooth muscle cells. International Journal of Medical Sciences, 10(1), 68.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, Q. Q., Chen, J. L., Lv, T. F., He, C. X., Tang, G. P., Liang, W. Q., et al. (2009). N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biological & Pharmaceutical Bulletin, 32(4), 706–710.

    Article  CAS  Google Scholar 

  38. Jouan, E., Le Vée, M., Mayati, A., Denizot, C., Parmentier, Y., & Fardel, O. (2016). Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics, 8(2), 12.

    Article  CAS  PubMed Central  Google Scholar 

  39. Tsou, S. H., Chen, T. M., Hsiao, H. T., & Chen, Y. H. (2015). A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One, 10(1), e0116747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, V. Y., Posada, M. M., Zhao, L., & Rosania, G. R. (2007). Rapid doxorubicin efflux from the nucleus of drug-resistant cancer cells following extracellular drug clearance. Pharmaceutical Research, 24(11), 2156–2167.

    Article  CAS  PubMed  Google Scholar 

  41. Rajagopal, A., & Simon, S. M. (2003). Subcellular localization and activity of multidrug resistance proteins. Molecular Biology of the Cell, 14(8), 3389–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalton, W. S., & Scheper, R. J. (1999). Lung resistance-related protein: determining its role in multidrug resistance. Journal of the National Cancer Institute, 91(19), 1604–1605.

    Article  CAS  PubMed  Google Scholar 

  43. Ramachandran, C., & Wellham, L. L. (2003). Effect of MDR1 phosphorothioate antisense oligodeoxynucleotides in multidrug-resistant human tumor cell lines and xenografts. Anticancer Research, 23(3B), 2681–2690.

    CAS  PubMed  Google Scholar 

  44. Cairns, M. J., Hopkins, T. M., Witherington, C., Wang, L., & Sun, L. Q. (1999). Target site selection for an RNA-cleaving catalytic DNA. Nature Biotechnology, 17(5), 480–486.

    Article  CAS  PubMed  Google Scholar 

  45. Beale, G., Hollins, A. J., Benboubetra, M., Sohail, M., Fox, S. P., Benter, I., et al. (2003). Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. Journal of Drug Targeting, 11(7), 449–456.

    Article  CAS  PubMed  Google Scholar 

  46. Iversen, P. O., Nicolaysen, G., & Sioud, M. (2001). DNA enzyme targeting TNF-α mRNA improves hemodynamic performance in rats with postinfarction heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 281(5), H2211–H22H7.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi, H., Hamazaki, H., Habu, Y., Hayashi, M., Abe, T., Miyano-Kurosaki, N., et al. (2004). A new modified DNA enzyme that targets influenza virus A mRNA inhibits viral infection in cultured cells. FEBS Letters, 560(1–3), 69–74.

    Article  CAS  PubMed  Google Scholar 

  48. Pun, S. H., Bellocq, N. C., Cheng, J., Grubbs, B. H., Jensen, G. S., Davis, M. E., et al. (2004). Biodistribution of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biology & Therapy, 3, 641–650.

    Article  CAS  Google Scholar 

  49. Tack, F., Bakker, A., Maes, S., Dekeyser, N., Bruining, M., Elissen-Roman, C., et al. (2006). Modified poly (propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). Journal of Drug Targeting, 14(2), 69–86.

    Article  CAS  PubMed  Google Scholar 

  50. Vimal, S., Majeed, S. A., Taju, G., Nambi, K. S. N., Raj, N. S., Madan, N., et al. (2013). RETRACTED: chitosan tripolyphosphate (CS/TPP) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta Tropica, 128(3), 486–493.

    Article  CAS  PubMed  Google Scholar 

  51. Katas, H., & Alpar, H. O. (2006). Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal of Controlled Release, 115(2), 216–225.

    Article  CAS  PubMed  Google Scholar 

  52. Takechi-Haraya, Y., Tanaka, K., Tsuji, K., Asami, Y., Izawa, H., Shigenaga, A., et al. (2015). Molecular complex composed of β-cyclodextrin-grafted chitosan and pH-sensitive amphipathic peptide for enhancing cellular cholesterol efflux under acidic pH. Bioconjugate Chemistry, 26(3), 572–581.

    Article  CAS  PubMed  Google Scholar 

  53. Thews, O., Gassner, B., Kelleher, D. K., Schwerd, G., & Gekle, M. (2006). Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia, 8(2), 143–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study received a financial support from the Research Council of the Shahid Bahonar University of Kerman (Iran).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arastoo Badoei-dalfrad or Mehdi Ansari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zokaei, E., Badoei-dalfrad, A., Ansari, M. et al. Therapeutic Potential of DNAzyme Loaded on Chitosan/Cyclodextrin Nanoparticle to Recovery of Chemosensitivity in the MCF-7 Cell Line. Appl Biochem Biotechnol 187, 708–723 (2019). https://doi.org/10.1007/s12010-018-2836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2836-x

Keywords

Navigation