Skip to main content

Advertisement

Log in

Cyclic Voltammetric DNA Binding Investigations on Some Anticancer Potential Metal Complexes: a Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is developed by rapid, uncontrolled, and abnormal cell proliferation and one of the leading causes of deaths worldwide in human beings. For the remedial measures of preventing different types of cancers, one of the research domains that have gained substantial importance in medical science is the development of new metallo-drugs and their investigations as potential anticancer drug agents by using various analytical techniques. Since metal-based complexes show weak absorption bands, electrochemical methods are considered more feasible and preferable over spectroscopic methods for easy characterization. Due to closer resemblance of electrochemical and biological processes, cyclic voltammetry among different electrochemical methods is considered the most versatile for the study of in-vitro metal-based drug–DNA interactions in terms of changes in the redox activities. Current potential data of a metal complex leads to determine binding kinetics in terms of binding constant and binding site size that involve determining the binding mode of drug with DNA, i.e., electrostatic interactions, intercalation, or minor-major groove binding. Binding parameters and modes of interactions, further, help to develop the mechanism of action of drug with the DNA. In this review, we emphasize on cyclic voltammetric DNA binding studies on some metal complexes that have been carried out in the last three decades for the investigation of their anticancer potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300.

    Google Scholar 

  2. Dianzani, C., Zara, G. P., Maina, G., Pettazzoni, P., Pizzimenti, S., Rossi, F., Gigliotti, C. L., Ciamporcero, E. S., Daga, M., & Barrera, G. (2014). Drug delivery nanoparticles in skin cancers. BioMed Research International, 2014, 113.

    Article  Google Scholar 

  3. Sugawara, Y., Tamaki, T., & Yamaguchi, T. (2014). DNA molecular recognition of intercalators affects aggregation of a thermoresponsive polymer. Polymer Chemistry, 5(16), 4612–4616.

    Article  CAS  Google Scholar 

  4. Metcalfe, C., & Thomas, J. A. (2003). Kinetically inert transition metal complexes that reversibly bind to DNA. Chemical Society Reviews, 32(4), 215–224.

    Article  CAS  Google Scholar 

  5. Boer, D. R., Canals, A., & Coll, M. (2009). DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Transactions, (3), 399–414.

  6. Bruijnincx, P. C., & Sadler, P. J. (2008). New trends for metal complexes with anticancer activity. Current Opinion in Chemical Biology, 12(2), 197–206.

    Article  CAS  Google Scholar 

  7. Arjmand, F., Muddassir, M., & Khan, R. H. (2010). Chiral preference of l-tryptophan derived metal-based antitumor agent of late 3d-metal ions (Co (II), Cu (II) and Zn (II)) in comparison to d-and dl-tryptophan analogues: their in vitro reactivity towards CT DNA, 5′-GMP and 5′-TMP. European Journal of Medicinal Chemistry, 45(9), 3549–3557.

    Article  CAS  Google Scholar 

  8. Palchaudhuri, R., & Hergenrother, P. J. (2007). DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Current Opinion in Biotechnology, 18(6), 497–503.

    Article  CAS  Google Scholar 

  9. Prabhakar, P., & Kayastha, A. M. (1994). Mechanism of DNA-drug interactions. Applied Biochemistry and Biotechnology, 47(1), 39–55.

    Article  CAS  Google Scholar 

  10. Turel, I., & Kljun, J. (2011). Interactions of metal ions with DNA, its constituents and derivatives, which may be relevant for anticancer research. Current Topics in Medicinal Chemistry, 11(21), 2661–2687.

    Article  CAS  Google Scholar 

  11. Hurley, L. H. (2002). DNA and its associated processes as targets for cancer therapy. Nature Reviews Cancer, 2(3), 188–200.

    Article  CAS  Google Scholar 

  12. Catapano, C., Carbone, G., & Fernandes, D. (1996). The nuclear matrix as a target for cancer therapy. Annals of Oncology, 7(7), 659–666.

    Article  CAS  Google Scholar 

  13. Galanski, M., Jakupec, M. A., & Keppler, B. K. (2005). Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Current Medicinal Chemistry, 12(18), 2075–2094.

    Article  CAS  Google Scholar 

  14. Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 106(1), 17–89.

    Article  Google Scholar 

  15. Arshad, N., Abbas, N., Bhatti, M. H., Rashid, N., Tahir, M. N., Saleem, S., & Mirza, B. (2012). Synthesis, crystal structure, DNA binding and in vitro biological studies of Ni (II), Cu (II) and Zn (II) complexes of N-phthaloylglycine. Journal of Photochemistry and Photobiology B: Biology, 117, 228–239.

    Article  CAS  Google Scholar 

  16. Hardeland, R. (2005). Atioxidative protection by melatonin. Endocrine, 27(2), 119–130.

    Article  CAS  Google Scholar 

  17. Galanski, M., Arion, V., Jakupec, M., & Keppler, B. (2003). Recent developments in the field of tumor-inhibiting metal complexes. Current Pharmaceutical Design, 9(25), 2078–2089.

    Article  CAS  Google Scholar 

  18. Aslanoglu, M., Isaac, C. J., Houlton, A., & Horrocks, B. R. (2000). Voltammetric measurements of the interaction of metal complexes with nucleic acids. Analyst, 125(10), 1791–1798.

    Article  CAS  Google Scholar 

  19. Laurent, S., Bridot, J.-L., Vander Elst, L., & Muller, R. N. (2010). Magnetic iron oxide nanoparticles for biomedical applications. Future, 2, 427–449.

    CAS  Google Scholar 

  20. Gulick, R. M., Mellors, J. W., Havlir, D., Eron, J. J., Gonzalez, C., McMahon, D., Richman, D. D., Valentine, F. T., Jonas, L., & Meibohm, A. (1997). Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. New England Journal of Medicine, 337(11), 734–739.

    Article  CAS  Google Scholar 

  21. Shahabadi, N., Kashanian, S. and Fatahi, A. (2011) Identification of binding mode of a platinum (II) complex, PtCl. Bioinorganic chemistry and applications, 2011.

  22. Ahmadi, F., Saberkari, M., Abiri, R., Motlagh, H. M., & Saberkari, H. (2013). In vitro evaluation of Zn–norfloxacin complex as a potent cytotoxic and antibacterial agent, proposed model for DNA binding. Applied Biochemistry and Biotechnology, 170(4), 988–1009.

    Article  CAS  Google Scholar 

  23. Pemberton, R., Hart, J., & Mottram, T. (2001). An electrochemical immunosensor for milk progesterone using a continuous flow system. Biosensors and Bioelectronics, 16(9-12), 715–723.

    Article  CAS  Google Scholar 

  24. Maurer, R. I., Blower, P. J., Dilworth, J. R., Reynolds, C. A., Zheng, Y., & Mullen, G. E. (2002). Studies on the mechanism of hypoxic selectivity in copper bis (thiosemicarbazone) radiopharmaceuticals. Journal of Medicinal Chemistry, 45(7), 1420–1431.

    Article  CAS  Google Scholar 

  25. Arshad, N., Bhatti, M. H., Farooqi, S. I., Saleem, S., & Mirza, B. (2016). Synthesis, photochemical and electrochemical studies on triphenyltin (IV) derivative of (Z)-4-(4-cyanophenylamino)-4-oxobut-2-enoic acid for its binding with DNA: biological interpretation. Arabian Journal of Chemistry, 9(3), 451–462.

    Article  CAS  Google Scholar 

  26. Ge, D. (2013) Electrochemical detection of surface hybridization based on highly thermostable DNA monolayers. Polytechnic Institute of New York University.

  27. Gholivand, M., Peyman, H., Gholivand, K., Roshanfekr, H., Taherpour, A., & Yaghobi, R. (2017). Theoretical and instrumental studies of the competitive interaction between aromatic α-Aminobisphosphonates with DNA using binding probes. Applied Biochemistry and Biotechnology, 182(3), 925–943.

    Article  CAS  Google Scholar 

  28. Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346.

    Article  CAS  Google Scholar 

  29. Astruc, D. (2012). Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nature Chemistry, 4(4), 255–267.

    Article  CAS  Google Scholar 

  30. Zeng, Y. N., Zheng, N., Osborne, P. G., Li, Y. Z., Chang, W. B., & Wen, M. J. (2002). Cyclic voltammetry characterization of metal complex imprinted polymer. Journal of Molecular Recognition, 15(4), 204–208.

    Article  CAS  Google Scholar 

  31. Sun, R. W.-Y., Ma, D.-L., Wong, E. L.-M., & Che, C.-M. (2007). Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Transactions, 4884–4892.

  32. Emam, S. M., El Sayed, I. E. T., & Nassar, N. (2015). Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 942–953.

    Article  CAS  Google Scholar 

  33. Cleare, M. J., & Hoeschele, J. D. (1973). Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorganic Chemistry, 2(3), 187–210.

    Article  CAS  Google Scholar 

  34. Rosenberg, B., & Vancamp, L. (1969). Platinum compounds: a new class of potent antitumour agents. nature, 222(5191), 385–386.

    Article  CAS  Google Scholar 

  35. Pattan, S., Pawar, S., Vetal, S., Gharate, U., & Bhawar, S. (2012). The scope of metal complexes in drug design—a review. Indian Drugs, 49, 5–12.

    Google Scholar 

  36. Dhivya, R., Jaividhya, P., Riyasdeen, A., Palaniandavar, M., Mathan, G., & Akbarsha, M. A. (2015). In vitro antiproliferative and apoptosis-inducing properties of a mononuclear copper (II) complex with dppz ligand, in two genotypically different breast cancer cell lines. BioMetals, 28(5), 929–943.

    Article  CAS  Google Scholar 

  37. Shahabadi, N., Hadidi, S., & Taherpour, A. A. (2014). Synthesis, characterization, and DNA binding studies of a new Pt (II) complex containing the drug levetiracetam: combining experimental and computational methods. Applied Biochemistry and Biotechnology, 172(5), 2436–2454.

    Article  CAS  Google Scholar 

  38. Erkkila, K. E., Odom, D. T., & Barton, J. K. (1999). Recognition and reaction of metallointercalators with DNA. Chemical Reviews, 99(9), 2777–2796.

    Article  CAS  Google Scholar 

  39. Tabassum, S. (2009). Synthesis of new piperazine derived cu (II)/Zn (II) metal complexes, their DNA binding studies, electrochemistry and anti-microbial activity: validation for specific recognition of Zn (II) complex to DNA helix by interaction with thymine base. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 1026–1033.

    Article  Google Scholar 

  40. Mahadevan, S., & Palaniandavar, M. (1998). Spectroscopic and voltammetric studies on copper complexes of 2, 9-dimethyl-1, 10-phenanthrolines bound to calf thymus DNA. Inorganic Chemistry, 37(4), 693–700.

    Article  CAS  Google Scholar 

  41. Chauhan, M., Banerjee, K., & Arjmand, F. (2007). DNA binding studies of novel copper (II) complexes containing l-tryptophan as chiral auxiliary: in vitro antitumor activity of Cu− Sn2 complex in human neuroblastoma cells. Inorganic Chemistry, 46(8), 3072–3082.

    Article  CAS  Google Scholar 

  42. Blankespoor, R., Limoges, B., Schöllhorn, B., Syssa-Magalé, J.-L., & Yazidi, D. (2005). Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Langmuir, 21(8), 3362–3375.

    Article  CAS  Google Scholar 

  43. García, T., Revenga-Parra, M., Abruna, H., Pariente, F., & Lorenzo, E. (2008). Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex. Analytical Chemistry, 80(1), 77–84.

    Article  Google Scholar 

  44. Ni, Y., Lin, D., & Kokot, S. (2006). Synchronous fluorescence, UV–visible spectrophotometric, and voltammetric studies of the competitive interaction of bis (1, 10-phenanthroline) copper (II) complex and neutral red with DNA. Analytical Biochemistry, 352(2), 231–242.

    Article  CAS  Google Scholar 

  45. Ringhieri, P. (2010) Synthetic heme-proteins in biosensors development. Università degli Studi di Napoli Federico II.

  46. Swavey, S., DeBeer, M., & Li, K. (2015). Photoinduced interactions of Supramolecular ruthenium (II) complexes with plasmid DNA: Synthesis and spectroscopic, electrochemical, and DNA photocleavage studies. Inorganic Chemistry, 54(7), 3139–3147.

    Article  CAS  Google Scholar 

  47. Arjmand, F., & Aziz, M. (2009). Synthesis and characterization of dinuclear macrocyclic cobalt (II), copper (II) and zinc (II) complexes derived from 2, 2, 2′, 2′-S, S [bis (bis-N, N-2-thiobenzimidazolyloxalato-1, 2-ethane)]: DNA binding and cleavage studies. European Journal of Medicinal Chemistry, 44(2), 834–844.

    Article  CAS  Google Scholar 

  48. Abdi, K., Hadadzadeh, H., Salimi, M., Simpson, J., & Khalaji, A. D. (2012). A mononuclear copper (II) complex based on the polypyridyl ligand 2, 4, 6-tris (2-pyridyl)-1, 3, 5-triazine (tptz),[Cu (tptz) 2] 2+: X-ray crystal structure, DNA binding and in vitro cell cytotoxicity. Polyhedron, 44(1), 101–112.

    Article  CAS  Google Scholar 

  49. Asghar, F., Badshah, A., Shah, A., Rauf, M. K., Ali, M. I., Tahir, M. N., Nosheen, E., & Qureshi, R. (2012). Synthesis, characterization and DNA binding studies of organoantimony (V) ferrocenyl benzoates. Journal of Organometallic Chemistry, 717, 1–8.

    Article  CAS  Google Scholar 

  50. Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Ismail, H., Mirza, B., Mckee, V., & Bolte, M. (2015). Synthesis, biological and electrochemical evaluation of novel nitroaromatics as potential anticancerous drugs. Bioelectrochemistry, 104, 85–92.

    Article  CAS  Google Scholar 

  51. Campagna, S., Cavazzini, M., Cusumano, M., Di Pietro, M. L., Giannetto, A., Puntoriero, F., & Quici, S. (2011). Luminescent Ir (III) complex exclusively made of Polypyridine ligands capable of intercalating into calf-Thymus DNA. Inorganic Chemistry, 50(21), 10667–10672.

    Article  CAS  Google Scholar 

  52. Mathur, S., & Tabassum, S. (2008). Template synthesis of novel carboxamide dinuclear copper (II) complex: spectral characterization and reactivity towards calf-thymus DNA. Biometals, 21(3), 299–310.

    Article  CAS  Google Scholar 

  53. Carter, M. T., Rodriguez, M., & Bard, A. J. (1989). Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and 2, 2′-bipyridine. Journal of the American Chemical Society, 111(24), 8901–8911.

    Article  CAS  Google Scholar 

  54. Zhang, M.-L., Li, D.-S., Wang, J.-J., Fu, F., Du, M., Zou, K., & Gao, X.-M. (2009). Structural diversity and properties of Zn II and Cd II complexes with a flexible dicarboxylate building block 1, 3-phenylenediacetate and various heterocyclic co-ligands. Dalton Transactions, (27), 5355–5364.

  55. Xu, Z.-H., Chen, F.-J., Xi, P.-X., Liu, X.-H., & Zeng, Z.-Z. (2008). Synthesis, characterization, and DNA-binding properties of the cobalt (II) and nickel (II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone. Journal of Photochemistry and Photobiology A: Chemistry, 196(1), 77–83.

    Article  CAS  Google Scholar 

  56. Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–visiblefluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19.

    Article  CAS  Google Scholar 

  57. Li, N., Ma, Y., Yang, C., Guo, L., & Yang, X. (2005). Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophysical Chemistry, 116(3), 199–205.

    Article  CAS  Google Scholar 

  58. Dash, S., Panigrahi, M., Baliyarsingh, S., K Behera, P., Patel, S., & K Mishra, B. (2011). Cyanine dyes-nucleic acids interactions. Current Organic Chemistry, 15(15), 2673–2689.

    Article  CAS  Google Scholar 

  59. Doan, P. H., Pitter, D. R., Kocher, A., Wilson, J. N., & Goodson III, T. (2015). Two-photon spectroscopy as a new sensitive method for determining the DNA binding mode of fluorescent nuclear dyes. Journal of the American Chemical Society, 137(29), 9198–9201.

    Article  CAS  Google Scholar 

  60. Karadeniz, H., Gulmez, B., Erdem, A., Jelen, F., Ozsoz, M., & Palecek, E. (2006). Echinomycin and cobalt-phenanthroline as redox indicators of DNA hybridization at gold electrodes. Frontiers in Bioscience, 11(1), 1870–1877.

    Article  CAS  Google Scholar 

  61. Kowol, C. R., Reisner, E., Chiorescu, I., Arion, V. B., Galanski, M., Deubel, D. V., & Keppler, B. K. (2008). An electrochemical study of antineoplastic gallium, iron and ruthenium complexes with redox noninnocent α-N-heterocyclic chalcogensemicarbazones. Inorganic Chemistry, 47(23), 11032–11047.

    Article  CAS  Google Scholar 

  62. Sathisha, MP. (2007) Synthesis, structure, electrochemistry, and spectral characterization of bis-isatin thiocarbohydrazone metal complexes and their antitumor activity against Ehrlich ascites carcinoma in Swiss albino mice. Metal-Based Drugs, 2008.

  63. Han, T. Y., Guan, T. S., Iqbal, M. A., Haque, R. A., Rajeswari, K. S., Ahamed, M. B. K., & Majid, A. A. (2014). Synthesis of water soluble copper (II) complexes: crystal structures, DNA binding, oxidative DNA cleavage, and in vitro anticancer studies. Medicinal Chemistry Research, 23(5), 2347–2359.

    Article  CAS  Google Scholar 

  64. Li, G., Liu, N., Liu, S., & Zhang, S. (2008). Electrochemical biosensor based on the interaction between copper (II) complex with 4, 5-diazafluorene-9-one and bromine ligands and deoxyribonucleic acid. Electrochimica Acta, 53(6), 2870–2876.

    Article  CAS  Google Scholar 

  65. Li, X.-M., Ju, H.-Q., Ding, C.-F., & Zhang, S.-S. (2007). Nucleic acid biosensor for detection of hepatitis B virus using 2, 9-dimethyl-1, 10-phenanthroline copper complex as electrochemical indicator. Analytica Chimica Acta, 582(1), 158–163.

    Article  CAS  Google Scholar 

  66. Ebrahimipour, S. Y., Sheikhshoaie, I., Castro, J., Haase, W., Mohamadi, M., Foro, S., Sheikhshoaie, M., & Esmaeili-Mahani, S. (2015). A novel cationic copper (II) Schiff base complex: Synthesis, characterization, crystal structure, electrochemical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorganica Chimica Acta, 430, 245–252.

    Article  CAS  Google Scholar 

  67. Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G., & Pettinari, R. (2013). Mixed-ligand Cu (II)–vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. European Journal of Medicinal Chemistry, 60, 216–232.

    Article  CAS  Google Scholar 

  68. Liu, J., Zhang, T., Lu, T., Qu, L., Zhou, H., Zhang, Q., & Ji, L. (2002). DNA-binding and cleavage studies of macrocyclic copper (II) complexes. Journal of Inorganic Biochemistry, 91(1), 269–276.

    Article  CAS  Google Scholar 

  69. Zhang, F., Qing, C., Cheng, J., Zhang, C., Na, A., & Shuping, B. (2009). Electrochemical and spectrometric studies of double-strand calf thymus gland DNA denatured by Al (III) at neutral pH. Analytical Sciences, 25(8), 1019–1023.

    Article  CAS  Google Scholar 

  70. Facci, P. (2014) Biomolecular electronics: bioelectronics and the electrical control of biological systems and reactions.ed. William Andrew.

  71. Grueso, E., López-Pérez, G., Castellano, M., & Prado-Gotor, R. (2012). Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: probing partial intercalation and binding properties. Journal of Inorganic Biochemistry, 106(1), 1–9.

    Article  CAS  Google Scholar 

  72. Ibrahim, M. M., Mersal, G. A., Shazly, S., & Ramadan, A. (2012). Synthesis, characterization, and electrochemical properties of bis (2-benzimidazolylmethyl-6-sulfonate) amine-based zinc (II), copper (II), and oxidovanadium (IV) complexes: SOD scavenging, DNA binding, and anticancer activities. International Journal of Electrochemical Science, 7, 7526–7546.

    CAS  Google Scholar 

  73. Mohamadi, M., Ebrahimipour, S. Y., Torkzadeh-Mahani, M., Foro, S., & Akbari, A. (2015). A mononuclear diketone-based oxido-vanadium (IV) complex: structure, DNA and BSA binding, molecular docking and anticancer activities against MCF-7, HPG-2, and HT-29 cell lines. RSC Advances, 5(122), 101063–101075.

    Article  CAS  Google Scholar 

  74. Cosa, G., Focsaneanu, K., McLean, J. R. N., McNamee, J., & Scaiano, J. (2001). Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution. Photochemistry and Photobiology, 73(6), 585–599.

    Article  CAS  Google Scholar 

  75. Bigi, J. P., Harman, W. H., Lassalle-Kaiser, B., Robles, D. M., Stich, T. A., Yano, J., Britt, R. D., & Chang, C. J. (2012). A high-spin iron (IV)–oxo complex supported by a trigonal nonheme pyrrolide platform. Journal of the American Chemical Society, 134(3), 1536–1542.

    Article  CAS  Google Scholar 

  76. Stoffelbach, F., Poli, R., & Richard, P. (2002). Half-sandwich molybdenum (III) compounds containing diazadiene ligands and their use in the controlled radical polymerization of styrene. Journal of Organometallic Chemistry, 663(1-2), 269–276.

    Article  CAS  Google Scholar 

  77. Mahadevan, S., & Palaniandavar, M. (1996). Chiral discrimination in the binding of tris (phenanthroline) ruthenium (II) to calf thymus DNA: an electrochemical study. Bioconjugate Chemistry, 7(1), 138–143.

    Article  CAS  Google Scholar 

  78. Hazarika, P., Deka, J., Kamarkar, S., Bhola, S., Bhola, R., Medhi, O. and Medhi, C. Synthesis, characterization, DNA binding and anticancer property of mer-trichlorodimethylsulphoxide-S-(1, 10-phenanthroline) ruthenium (III).

  79. Arshad, N., Farooqi, S. I., Bhatti, M. H., Saleem, S., & Mirza, B. (2013). Electrochemical and spectroscopic investigations of carboxylic acid ligand and its triorganotin complexes for their binding with ds. DNA: In vitro biological studies. Journal of Photochemistry and Photobiology B: Biology, 125, 70–82.

    Article  CAS  Google Scholar 

  80. Li, Q., Batchelor-McAuley, C., Lawrence, N. S., Hartshorne, R. S., & Compton, R. G. (2011). Electrolyte tuning of electrode potentials: the one electron vs. two electron reduction of anthraquinone-2-sulfonate in aqueous media. Chemical Communications, 47(41), 11426–11428.

    Article  CAS  Google Scholar 

  81. Evans, D. H. (2008). One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. Chemical Reviews, 108(7), 2113–2144.

    Article  CAS  Google Scholar 

  82. Hussain, S., Ali, S., Shahzadi, S., Tahir, M. N., & Shahid, M. (2015). Synthesis, characterization, biological activities, crystal structure and DNA binding of organotin (IV) 5-chlorosalicylates. Journal of Coordination Chemistry, 68(14), 2369–2387.

    Article  CAS  Google Scholar 

  83. Bolel, P., Datta, S., Mahapatra, N., & Halder, M. (2012). Spectroscopic investigation of the effect of salt on binding of Tartrazine with two homologous serum albumins: quantification by use of the Debye–Hückel limiting law and observation of enthalpy–entropy compensation. The Journal of Physical Chemistry B, 116(34), 10195–10204.

    Article  CAS  Google Scholar 

  84. Ibrahim, M. (2001). Voltammetric studies of the interaction of nogalamycin antitumor drug with DNA. Analytica Chimica Acta, 443(1), 63–72.

    Article  CAS  Google Scholar 

  85. Boussicault, F., & Robert, M. (2008). Electron transfer in DNA and in DNA-related biological processes. Electrochemical insights. Chemical Reviews, 108(7), 2622–2645.

    Article  CAS  Google Scholar 

  86. Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA biosensors and microarrays. Chemical Reviews, 108(1), 109–139.

    Article  CAS  Google Scholar 

  87. Muhammad, N., Shah, A., Shuja, S., Ali, S., Qureshi, R., Meetsma, A., & Tahir, M. N. (2009). Organotin (IV) 4-nitrophenylethanoates: synthesis, structural characteristics and intercalative mode of interaction with DNA. Journal of Organometallic Chemistry, 694(21), 3431–3437.

    Article  CAS  Google Scholar 

  88. Shujha, S., Shah, A., Muhammad, N., Ali, S., Qureshi, R., Khalid, N., & Meetsma, A. (2010). Diorganotin (IV) derivatives of ONO tridentate Schiff base: synthesis, crystal structure, in vitro antimicrobial, anti-leishmanial and DNA binding studies. European Journal of Medicinal Chemistry, 45(7), 2902–2911.

    Article  CAS  Google Scholar 

  89. Molina, P., Tárraga, A., & Caballero, A. (2008). Ferrocene-based small molecules for multichannel molecular recognition of cations and anions. European Journal of Inorganic Chemistry, 2008(22), 3401–3417.

    Article  Google Scholar 

  90. Wu, K.-Q., Guo, J., Yan, J.-F., Xie, L. L., Xu, F.-B., Bai, S., Nockemann, P., & Yuan, Y.-F. (2011). Alkynyl-bridged ruthenium (II) 4′-Diferrocenyl-2, 2′: 6′, 2′′-terpyridine Electron transfer complexes: synthesis, structures, and electrochemical and spectroscopic studies. Organometallics, 30(13), 3504–3511.

    Article  CAS  Google Scholar 

  91. Lehn, J.-M. (1995). Perspectives in supramolecular chemistry: self-assembly in solution. Journal of Molecular Biology, 249, 424–444.

    Article  Google Scholar 

  92. Aslanoglu, M. (2006). Electrochemical and spectroscopic studies of the interaction of proflavine with DNA. Analytical Sciences, 22(3), 439–443.

    Article  CAS  Google Scholar 

  93. Jung, Y., & Lippard, S. J. (2007). Direct cellular responses to platinum-induced DNA damage. Chemical Reviews, 107(5), 1387–1407.

    Article  CAS  Google Scholar 

  94. Kaufmann, S. H. (1998). Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1400(1-3), 195–211.

    Article  CAS  Google Scholar 

  95. Castedo, M., Perfettini, J., Roumier, T., & Kroemer, G. (2002). Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death and Differentiation, 9(12), 1287–1293.

    Article  CAS  Google Scholar 

  96. Kashanian, S., Khodaei, M. M., Roshanfekr, H., Shahabadi, N., & Mansouri, G. (2012). DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper (II) complex: the effect of ligand shape on the mode of binding. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 351–359.

    Article  CAS  Google Scholar 

  97. Tabassum, S., Khan, R. A., Arjmand, F., Aziz, M., Juvekar, A. S., & Zingde, S. M. (2011). Carbohydrate-conjugate heterobimetallic complexes: synthesis, DNA binding studies, artificial nuclease activity and in vitro cytotoxicity. Carbohydrate Research, 346(18), 2886–2895.

    Article  CAS  Google Scholar 

  98. Zhou, C.-Y., Zhao, J., Wu, Y.-B., Yin, C.-X., & Pin, Y. (2007). Synthesis, characterization and studies on DNA-binding of a new Cu (II) complex with N1, N8-bis (l-methyl-4-nitropyrrole-2-carbonyl) triethylenetetramine. Journal of Inorganic Biochemistry, 101(1), 10–18.

    Article  CAS  Google Scholar 

  99. Mohamed, M. S., Shoukry, A. A., & Ali, A. G. (2012). Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2, 2′-bipyridine and 2, 2′-dipyridylamine. The DNA-binding studies and biological activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 562–570.

    Article  CAS  Google Scholar 

  100. Gupta, R. K., Pandey, R., Sharma, G., Prasad, R., Koch, B., Srikrishna, S., Li, P.-Z., Xu, Q., & Pandey, D. S. (2013). DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru (II), Rh (III), and Ir (III) complexes containing 4-(2-methoxypyridyl) phenyldipyrromethene. Inorganic Chemistry, 52(7), 3687–3698.

    Article  CAS  Google Scholar 

  101. Pathan, A. H., Bakale, R. P., Naik, G. N., Frampton, C. S., & Gudasi, K. B. (2012). Synthesis, crystal structure, redox behavior and comprehensive studies on DNA binding and cleavage properties of transition metal complexes of a fluoro substituted thiosemicarbazone derived from ethyl pyruvate. Polyhedron, 34(1), 149–156.

    Article  CAS  Google Scholar 

  102. Raman, N., Jeyamurugan, R., Sakthivel, A., & Mitu, L. (2010). Novel metal-based pharmacologically dynamic agents of transition metal (II) complexes: designing, synthesis, structural elucidation, DNA binding and photo-induced DNA cleavage activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 88–97.

    Article  CAS  Google Scholar 

  103. Zhang, Q.-L., Liu, J.-G., Chao, H., Xue, G.-Q., & Ji, L.-N. (2001). DNA-binding and photocleavage studies of cobalt (III) polypyridyl complexes: [Co (phen) 2IP] 3+ and [Co (phen) 2PIP] 3+. Journal of Inorganic Biochemistry, 83(1), 49–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thanks the Department of Chemistry, Allama Iqbal Open University, Islamabad for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasima Arshad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, N., Farooqi, S.I. Cyclic Voltammetric DNA Binding Investigations on Some Anticancer Potential Metal Complexes: a Review. Appl Biochem Biotechnol 186, 1090–1110 (2018). https://doi.org/10.1007/s12010-018-2818-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2818-z

Keywords

Navigation