Skip to main content
Log in

Synthesis of 2-Ethylhexyl Palmitate Catalyzed by Enzyme Under Microwave

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2-Ethylhexyl palmitate has been prepared in organic solvents catalyzed by an immobilized lipase QLM. Microwave irradiation was used to improve the enzyme activity and shorten the reaction time. The reaction conditions under microwave have been optimized. Compared with that of the free QLM under classical heating, the immobilized QLM under microwave exhibited higher enzyme activity and the conversion could achieve 99% in about 3.0 h. Furthermore, the immobilized QLM displayed excellent reusability under microwave irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zaks, A., & Klibanov, A. M. (1985). Enzyme-catalyzed processes in organic solvents. PNAS, 82(10), 3192–3196. https://doi.org/10.1073/pnas.82.10.3192.

    Article  CAS  Google Scholar 

  2. Cantone, S., Hanefeld, U., & Basso, A. (2007). Biocatalysis in non-conventional media—ionic liquids, supercritical fluids and the gas phase. Green Chemistry, 9(9), 954–971. https://doi.org/10.1039/b618893a.

    Article  CAS  Google Scholar 

  3. Carrea, G., & Riva, S. (2000). Properties and synthetic applications of enzymes in organic solvents. Angewandte Chemie, International Edition, 39(13), 2226–2254. https://doi.org/10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  4. Choi, J.-M., Han, S.-S., & Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnology Advances, 33(7), 1443–1454. https://doi.org/10.1016/j.biotechadv.2015.02.014.

    Article  CAS  Google Scholar 

  5. Klibanov, A. M. (1997). Why are enzymes less active in organic solvents than in water? Trends in Biotechnology, 15(3), 97–101. https://doi.org/10.1016/S0167-7799(97)01013-5.

    Article  CAS  Google Scholar 

  6. Lee, M.-Y., & Dordick, J. S. (2002). Enzyme activation for nonaqueous media. Current Opinion in Biotechnology, 13(4), 376–384. https://doi.org/10.1016/S0958-1669(02)00337-3.

    Article  CAS  Google Scholar 

  7. Serdakowski, A. L., & Dordick, J. S. (2008). Enzyme activation for organic solvents made easy. Trends in Biotechnology, 26(1), 48–54. https://doi.org/10.1016/j.tibtech.2007.10.007.

    Article  CAS  Google Scholar 

  8. Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwave-accelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35(9), 717–727. https://doi.org/10.1021/ar010074v.

    Article  CAS  Google Scholar 

  9. Whittaker, A., & Mingos, D. (1994). The application of microwave heating to chemical syntheses. The Journal of Microwave Power and Electromagnetic Energy, 29(4), 195–219. https://doi.org/10.1080/08327823.1994.11688249.

    Article  Google Scholar 

  10. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie, International Edition, 43(46), 6250–6284. https://doi.org/10.1002/anie.200400655.

    Article  CAS  Google Scholar 

  11. Roy, I., Gupta, M.N. (2003). Applications of microwaves in biological sciences. Current Science, 1685–1693.

  12. Parker, M.-C., Besson, T., Lamare, S., & Legoy, M.-D. (1996). Microwave radiation can increase the rate of enzyme-catalysed reactions in organic media. Tetrahedron Letters, 37(46), 8383–8386. https://doi.org/10.1016/0040-4039(96)01544-4.

    Article  CAS  Google Scholar 

  13. Yadav, G. D., & Lathi, P. S. (2004). Synergism between microwave and enzyme catalysis in intensification of reactions and selectivities: transesterification of methyl acetoacetate with alcohols. Journal of Molecular Catalysis A: Chemical, 223(1), 51–56. https://doi.org/10.1016/j.molcata.2003.09.050.

    CAS  Google Scholar 

  14. Carrillo-Munoz, J.-R., Bouvet, D., Guibé-Jampel, E., Loupy, A., & Petit, A. (1996). Microwave-promoted lipase-catalyzed reactions. Resolution of (±)-1-phenylethanol. The Journal of Organic Chemistry, 61(22), 7746–7749.

    Article  CAS  Google Scholar 

  15. Yu, D., Wang, Z., Chen, P., Jin, L., Cheng, Y., Zhou, J., & Cao, S. (2007). Microwave-assisted resolution of (R, S)-2-octanol by enzymatic transesterification. Journal of Molecular Catalysis B: Enzymatic, 48(1), 51–57. https://doi.org/10.1016/j.molcatb.2007.06.009.

    Article  CAS  Google Scholar 

  16. Tarahomjoo, S., & Alemzadeh, I. (2003). Surfactant production by an enzymatic method. Enzyme and Microbial Technology, 33(1), 33–37. https://doi.org/10.1016/S0141-0229(03)00085-1.

    Article  CAS  Google Scholar 

  17. Richetti, A., Leite, S. G., Antunes, O. A., de Souza, A. L., Lerin, L. A., Dallago, R. M., Paroul, N., Di Luccio, M., Oliveira, J. V., & Treichel, H. (2010). Optimization of 2-ethylhexyl palmitate production using Lipozyme RM IM as catalyst in a solvent-free system. Applied Biochemistry and Biotechnology, 160(8), 2498–2508. https://doi.org/10.1007/s12010-009-8756-z.

    Article  CAS  Google Scholar 

  18. Richetti, A., Leite, S. G., Antunes, O. A., Lerin, L. A., Dallago, R. M., Emmerich, D., Di Luccio, M., Vladimir Oliveira, J., Treichel, H., & de Oliveira, D. (2010). Assessment of process variables on 2-ethylhexyl palmitate production using Novozym 435 as catalyst in a solvent-free system. Bioprocess and Biosystems Engineering, 33(3), 331–337. https://doi.org/10.1007/s00449-009-0328-7.

    Article  CAS  Google Scholar 

  19. He, X.-l., Chen, B.-q., & Tan, T.-w. (2002). Enzymatic synthesis of 2-ethylhexyl esters of fatty acids by immobilized lipase from Candida sp. 99–125. Journal of Molecular Catalysis B: Enzymatic, 18(4), 333–339.

    Article  CAS  Google Scholar 

  20. Tan, T., Chen, B.-q., & Ye, H. (2006). Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochemical Engineering Journal, 29(1), 41–45. https://doi.org/10.1016/j.bej.2005.02.033.

    Article  CAS  Google Scholar 

  21. Shen, H., Tao, Y., Cui, C., Zhang, Y., Chen, B., & Tan, T. (2015). Synthesis of 2-ethyl hexanol fatty acid esters in a packed bed bioreactor using a lipase immobilized on a textile membrane. Biocatalysis and Biotransformation, 33(1), 44–50. https://doi.org/10.3109/10242422.2015.1018191.

    Article  CAS  Google Scholar 

  22. Yu, D., Wang, Z., Zhao, L., Cheng, Y., & Cao, S. (2007). Resolution of 2-octanol by SBA-15 immobilized Pseudomonas sp. lipase. Journal of Molecular Catalysis B: Enzymatic, 48(3), 64–69.

    Article  CAS  Google Scholar 

  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  24. Chen, S.Y., Chen, Y.T., Lee, J.J., et al. (2011). Tuning pore diameter of platelet SBA-15 materials with short mesochannels for enzyme adsorption[J]. Journal of Materials Chemistry, 450 21(15):5693–5703.

  25. Lidström, P., Tierney, J., Wathey, B., & Westman, J. (2001). Microwave assisted organic synthesis—a review. Tetrahedron, 57(45), 9225–9283. https://doi.org/10.1016/S0040-4020(01)00906-1.

    Article  Google Scholar 

  26. Rejasse, B., Lamare, S., Legoy, M.-D., & Besson, T. (2007). Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry. Journal of Enzyme Inhibition and Medicinal Chemistry, 22(5), 519–527. https://doi.org/10.1080/14756360701424959.

    Article  Google Scholar 

  27. Young, D. D., Nichols, J., Kelly, R. M., & Deiters, A. (2008). Microwave activation of enzymatic catalysis. Journal of the American Chemical Society, 130(31), 10048–10049. https://doi.org/10.1021/ja802404g.

    Article  CAS  Google Scholar 

  28. Yu, D., Tian, L., Ma, D., Wu, H., Wang, Z., Wang, L., & Fang, X. (2010). Microwave-assisted fatty acid methyl ester production from soybean oil by Novozym 435. Green Chemistry, 12(5), 844–850. https://doi.org/10.1039/b927073f.

    Article  CAS  Google Scholar 

  29. Liu, N., Wang, L., Wang, Z., Jiang, L., Wu, Z., Yue, H., & Xie, X. (2015). Microwave-assisted resolution of α-lipoic acid catalyzed by an ionic liquid co-lyophilized lipase. Molecules, 20(6), 9949–9960. https://doi.org/10.3390/molecules20069949.

    Article  CAS  Google Scholar 

  30. Wang, Y., Li, Q., Zhang, Z., Ma, J., & Feng, Y. (2009). Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of (R, S)-2-octanol and (R, S)-2-pentanol. Journal of Molecular Catalysis B: Enzymatic, 56(2), 146–150. https://doi.org/10.1016/j.molcatb.2008.01.010.

    Article  CAS  Google Scholar 

  31. Wilson, L., Palomo, J. M., Fernández-Lorente, G., Illanes, A., Guisán, J. M., & Fernández-Lafuente, R. (2006). Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp. Enzyme and Microbial Technology, 39(2), 259–264. https://doi.org/10.1016/j.enzmictec.2005.10.015.

    Article  CAS  Google Scholar 

  32. Carrea, G., Ottolina, G., & Riva, S. (1995). Role of solvents in the control of enzyme selectivity in organic media. Trends in Biotechnology, 13(2), 63–70. https://doi.org/10.1016/S0167-7799(00)88907-6.

    Article  CAS  Google Scholar 

  33. Gorman, L. A. S., & Dordick, J. S. (1992). Organic solvents strip water off enzymes. Biotechnology and Bioengineering, 39(4), 392–397. https://doi.org/10.1002/bit.260390405.

    Article  CAS  Google Scholar 

  34. Halling, P. J. (1994). Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme and Microbial Technology, 16(3), 178–206. https://doi.org/10.1016/0141-0229(94)90043-4.

    Article  CAS  Google Scholar 

  35. Mattiasson, B., & Adlercreutz, P. (1991). Tailoring the microenvironment of enzymes in water-poor systems. Trends in Biotechnology, 9(1), 394–398. https://doi.org/10.1016/0167-7799(91)90132-2.

    Article  CAS  Google Scholar 

  36. Hari Krishna, S., & Karanth, N. (2002). Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catalysis Reviews, 44(4), 499–591. https://doi.org/10.1081/CR-120015481.

    Article  Google Scholar 

Download references

Acknowledgements

We are gratefully for the financial support from the Fund of Basic Scientific Research from Jilin University (for Constructing the Scientific and Technological Platform, 2017) and the Foundation of Changchun BC&HC Pharmaceutical Technology Co., Ltd. (No. 3R116V401465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Y., Zhang, Y. et al. Synthesis of 2-Ethylhexyl Palmitate Catalyzed by Enzyme Under Microwave. Appl Biochem Biotechnol 185, 347–356 (2018). https://doi.org/10.1007/s12010-017-2666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2666-2

Keywords

Navigation