Skip to main content
Log in

Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation

Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5–20% decrease in glucose yield and 20–35% decrease in xylose yield. The addition of 5% SO2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ragauskas, A. J., Williams, C. K., Davison, B. H., et al. (1993). The path forward for biofuels and biomaterials. Science, 311, 484–489.

    Article  Google Scholar 

  2. Stephen, J. D., Mabee, W. E., & Saddler, J. N. (2012). Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels, Bioproducts & Biorefining, 6, 159–176.

    Article  CAS  Google Scholar 

  3. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  CAS  PubMed  Google Scholar 

  4. Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng, 2, 121–145.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, X., Shekiro, J., Franden, M. A., Wang, W., Zhang, M., Kuhn, E., et al. (2012). The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnology for Biofuels, 5(1), 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., & Schroeder, H. A. (1989). The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 20(1), 45.

    Article  Google Scholar 

  7. Kong, F., Engler, C. R., & Soltes, E. J. (1992). Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Applied Biochemistry and Biotechnology, 34(1), 23–35.

    Article  Google Scholar 

  8. Kumar, R., & Wyman, C. E. (2009). Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnology and Bioengineering, 102(2), 457–467.

    Article  CAS  PubMed  Google Scholar 

  9. Selig, M. J., Adney, W. S., Himmel, M. E., & Decker, S. R. (2009). The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose, 16(4), 711–722.

    Article  CAS  Google Scholar 

  10. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20(1), 200–206.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, X., Tao, L., Shekiro, J., Mohaghaghi, A., Decker, S., Wang, W., et al. (2012). Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 experimental. Biotechnology for Biofuels, 5(1), 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B., & Holtzapple, M. T. (2008). Structural features affecting biomass enzymatic digestibility. Bioresouce Tech., 99(9), 3817–3828.

    Article  CAS  Google Scholar 

  13. Yu, H. L., Tang, Y., Xing, Y., Zhu, L. W., & Jiang, J. X. (2013). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide. Bioresouce Tech., 147, 29–36.

    Article  CAS  Google Scholar 

  14. Sannigrahi, P., Ragauskas, A. J., & Tuskan, G. A. (2010). Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioproducts & Biorefining, 4(2), 209–226.

    Article  CAS  Google Scholar 

  15. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresouce Tech., 101(13), 4851–4861.

    Article  CAS  Google Scholar 

  16. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochemistry, 39(11), 1533–1542.

    Article  CAS  Google Scholar 

  17. Panagiotopoulos, I. A., Chandra, R. P., & Saddler, J. N. (2013). A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresouce Tech., 130, 570–577.

    Article  CAS  Google Scholar 

  18. Bura, R., Chandra, R., & Saddler, J. (2009). Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnology Progress, 25(2), 315–322.

    Article  CAS  PubMed  Google Scholar 

  19. Zimbardi, F., Viola, E., Nanna, F., Larocca, E., Cardinale, M., & Barisano, D. (2007). Acid impregnation and steam explosion of corn stover in batch processes. Industrial Crops and Products, 26(2), 195–206.

    Article  CAS  Google Scholar 

  20. Sluiter, A. (2004). Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedures. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  21. Dence, C. W. (1992). The determination of lignin. In S. Y. Lin & C. W. Dence (Eds.), Methods in Lignin Chemistry (pp. 33–61). Berlin: Springer.

    Chapter  Google Scholar 

  22. Chandra, R., Ewanick, S., Hsieh, C., & Saddler, J. N. (2008). The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons' staining technique. Biotechnology Progress, 24(5), 1178–1185.

    Article  CAS  PubMed  Google Scholar 

  23. Robertson, G., Olson, J., Allen, P., Chan, B., & Seth, R. (1999). Measurement of fiber length, coarseness, and shape with the fiber quality analyzer. Tappi Journal, 82(10), 93–98.

    CAS  Google Scholar 

  24. Bu, L., Xing, Y., Yu, H., Gao, Y., & Jiang, J. (2012). Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue. Biotechnology for Biofuels, 5(1), 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moya, A. J., Peinado, S., Mateo, S., Fonseca, B. G., & Sánchez, S. (2016). Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes. Bioresource Technology, 220, 239–245.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresouce Tech., 83(1), 1–11.

    Article  CAS  Google Scholar 

  27. Tao, L., Schell, D., Tan, E. C., & Elander, R. (2014). AB achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory Technical Report. NREL/TP-5100-61563, Golden, CO.

  28. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., & Hahn-Hägerdal, B. (1998). Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. In Biotechnology for Fuels and Chemicals (pp. 3–15). New York City: Humana Press.

    Chapter  Google Scholar 

  29. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresouce Tech., 96(6), 673–686.

    Article  CAS  Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  31. Pandey, K. K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71(12), 1969–1975.

    Article  CAS  Google Scholar 

  32. Jiang, W., Peng, H., Li, H., & Xu, J. (2014). Effect of acetylation/deacetylation on enzymatic hydrolysis of corn stalk. Biomass and Bioenergy, 71, 294–298.

    Article  CAS  Google Scholar 

  33. Zhu, J. Y., Pan, X. J., Wang, G. S., & Gleisner, R. (2009). Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresouce Tech., 100(8), 2411–2418.

    Article  CAS  Google Scholar 

  34. Arantes, V., & Saddler, J. N. (2011). Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for Biofuels, 4(1), 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kristensen, J. B., Thygesen, L. G., Felby, C., Jørgensen, H., & Elder, T. (2008). Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology for Biofuels, 1(1), 5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jabbour, D., Borrusch, M. S., Banerjee, G., & Walton, J. D. (2013). Enhancement of fermentable sugar yields by α-xylosidase supplementation of commercial cellulases. Biotechnology for Biofuels, 6(1), 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, L., Arantes, V., Chandra, R., & Saddler, J. (2012). The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresouce Tech., 103(1), 201–208.

    Article  CAS  Google Scholar 

  38. Kumar, L., Chandra, R., & Saddler, J. (2011). Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 108(10), 2300–2311.

    Article  CAS  PubMed  Google Scholar 

  39. Brienzo, M., Fikizolo, S., Benjamin, Y., Tyhoda, L., & Görgens, J. (2017). Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renewable Energy, 104, 271–280.

    Article  CAS  Google Scholar 

  40. Chandra, R. P., Chu, Q., Hu, J., Zhong, N., Lin, M., Lee, J. S., & Saddler, J. (2016). The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresouce Tech., 199, 135–141.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support from China Ministry of Science and Technology (2014DFG32550). We also thank all members of the Forest Products Biotechnology/Bioenergy Research Group UBC for their support and cooperation throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Tang or Jianxin Jiang.

Electronic Supplementary Material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Dou, X., Hu, J. et al. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation. Appl Biochem Biotechnol 184, 264–277 (2018). https://doi.org/10.1007/s12010-017-2545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2545-x

Keywords

Navigation