Skip to main content
Log in

MgO Nanoparticle-Catalyzed Synthesis and Broad-Spectrum Antibacterial Activity of Imidazolidine- and Tetrahydropyrimidine-2-Thione Derivatives

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biological properties of imidazolidine- and tetrahydropyrimidine-2-thione derivatives such as antiviral, antitumor, anti-inflammatory, and analgesic activities increase the demand for mild and efficient synthetic routes. In this regard, methods such as reaction of diaminoalkanes with carbon disulfide have been developed. However, this method usually suffers from relatively long reaction times, using excess reagents, vigorous reaction conditions, and emission of pernicious hydrogen sulfide gas. In this project, MgO nanoparticle was used as an efficient, non-toxic, recyclable, and economic catalyst to synthesize cyclic five- or six-membered thioureas 3ah via reaction of 1:1 molar ratios of 1,2- or 1,3-diaminoalkanes 1ah and carbon disulfide in ethanol at ambient temperature. More interestingly, no hydrogen sulfide emission was detected during the reaction progress. The in vitro antimicrobial properties of synthesized compounds were investigated against 14 different Gram-positive and Gram-negative pathogenic bacteria according to CLSI (Clinical and Laboratory Standards Institute) broth microdilution and disk diffusion methods. The results were compared to those of penicillin, gentamicin, and ceftriaxone, and reported as inhibition zone diameter (IZD), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC) values. The best inhibitory effects were observed with imidazolidine-2-thiones 3c and 3d. They were effective against 14 and 11 pathogens, respectively. The structure-activity relationships of the prepared heterocyclic compounds were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ibrahim, M. K., El-Adl, K., & Al-Karmalawy, A. A. (2015). Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo-2-phenyl-3-substituted-quinazolin-4(3H)-ones. Bulletin of Faculty of Pharmacy, Cairo University, 53, 101–116.

    Google Scholar 

  2. Kalhor, M., Salehifar, M., & Nikokar, I. (2014). Synthesis, characterization, and antibacterial activities of some novel N,N'-disubstituted thiourea, 2-amino thiazole, and imidazole-2-thione derivatives. Medicinal Chemistry Research, 23, 2947–2954.

    CAS  Google Scholar 

  3. Caneva, C., Alfei, S., De Maria, M., Ibba, C., Delogu, I., Spallarossa, A., & Loddo, R. (2015). Synthesis and biological evaluation of (acyl)hydrazones and thiosemicarbazones obtained via in situ condensation of iminium salts with nitrogen-containing nucleophiles. Molecular Diversity, 19, 669–684.

    CAS  PubMed  Google Scholar 

  4. El-Sharief, A. M., & Moussa, Z. (2009). Synthesis, characterization and derivatization of some novel types of mono- and bis-imidazolidineiminothiones and imidazolidineiminodithiones with antitumor, antiviral, antibacterial and antifungal activities—part I. European Journal of Medicinal Chemistry, 44, 4315–4334.

    CAS  PubMed  Google Scholar 

  5. Salem, M. A. I., Marzouk, M. I., Salem, M. S., & Alshibani, G. A. (2016). One-pot synthesis of 1,2,3,4-tetrahydropyrimidin-2(1H)-thione derivatives and their biological activity. Journal of Heterocyclic Chemistry, 53, 545–557.

    CAS  Google Scholar 

  6. Amir, M., Javed, S. A., & Kumar, H. (2008). Synthesis and biological evaluation of some 4-(1H-indol-3-yl)-6-phenyl-1,2,3,4-tetrahydropyrimidin-2-ones/thiones as potent anti-inflammatory agents. Acta Pharmaceutica, 58, 467–477.

    CAS  PubMed  Google Scholar 

  7. Cesarini, S., Spallarossa, A., Ranise, A., Schenone, S., Rosano, C., La Colla, P., Sanna, G., Busonera, B., & Loddo, R. (2009). N-Acylated and N,N'-diacylated imidazolidine-2-thione derivatives and N,N'-diacylated tetrahydropyrimidine-2(1H)-thione analogues: synthesis and antiproliferative activity. European Journal of Medicinal Chemistry, 44, 1106–1118.

    CAS  PubMed  Google Scholar 

  8. Sawant, R., & Sarode, V. (2011). Synthesis, spectral characterization and analgesic activity of 2-methylthio-1,4-dihydropyrimidines. Iranian Journal of Pharmaceutical Research, 10, 733–739.

    CAS  PubMed  Google Scholar 

  9. Unlusoy, M. C., Kazak, C., Bayro, O., Verspohl, E. J., Ertan, R., & Dundar, O. B. (2013). Synthesis and antidiabetic activity of 2,4-thiazolidindione, imidazolidinedione and 2-thioxo-imidazolidine-4-one derivatives bearing 6-methyl chromonyl pharmacophore. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 1205–1210.

    CAS  PubMed  Google Scholar 

  10. Bamnela, R., & Shriv Astava, S. P. (2010). Synthesis and in vitro antimicrobial, anthelmintic and insecticidal activities study of 4(4′-bromophenyl)-6-substituted-aryl-1-acetylpyrimidine-2-thiols. E-Journal of Chemistry, 7, 935–941.

    CAS  Google Scholar 

  11. Mebrouk, K., Camerel, F., Jeannin, O., Heinrich, B., Donnio, B., & Fourmigué, M. (2016). High photothermal activity within neutral nickel dithiolene complexes derived from imidazolium-based ionic liquids. Inorganic Chemistry, 55, 1296–1303.

    CAS  PubMed  Google Scholar 

  12. Chaloupka, S., Heimgartner, H., Schmid, H., Link, H., Schönholzer, P., & Bernauer, K. (1976). Synthesis and reactions of the valence polaromeric compound (4,4-dimethyl-2-thiazoline-5-dimethyliminium)-2-thiolate ⇌ 1-dimethylthiocarbamoyl-1-methyl-ethyl isothiocyanate from 3-dimethylamino-2,2-dimethyl-2H-azirine and carbon disulfide. Helvetica Chimica Acta, 59, 2566–2591 (in German).

    CAS  Google Scholar 

  13. O’Donovan, D. H., & Rozas, I. (2012). New methods for the preparation of aryl 2-iminoimidazolidines. Tetrahedron Letters, 53, 4532–4535.

    Google Scholar 

  14. Shutalev, A. D. (1998). Reaction of functionally 4-substituted hexahydropyrimidine-2-thiones with sodium tetrahydroborate synthesis of six-membered cyclic thioureas. Chemistry of Heterocyclic Compounds, 34, 204–206.

    CAS  Google Scholar 

  15. Ghanbari, M. M., Safari, J., & Roohi, Z. (2014). One-pot synthesis of imidazolidine-2-thiones, hydantoins and thiohydantoins under solvent-free and grinding conditions. OAlib Journal, 1, e705.

    Google Scholar 

  16. Saeed, A., & Batool, M. (2007). Synthesis and bioactivity of some new 1-tolyl-3-aryl-4-methylimidazole-2-thiones. Medicinal Chemistry Research, 16, 143–154.

    CAS  Google Scholar 

  17. Sawant, R. L., Sarode, V. I., Jadhav, G. D., & Wadekar, J. B. (2012). Synthesis, molecular docking, and cardioprotective activity of 2-methylthio-1,4-dihydropyrimidines. Medicinal Chemistry Research, 21, 1825–1832.

    CAS  Google Scholar 

  18. Morgenstern, O., Klemann, A., & Richter, P. H. (1992). N,N-connected heterobicycles from cyclic hydrazine derivatives. Part 5. Reaction of N-nucleophilic derivatives on pyrazolo heterocycles from pyrazolo and carbon disulfide. Pharmazie, 47, 416–418 (in German).

    CAS  Google Scholar 

  19. Kornicka, A., Saczewski, F., & Gdaniec, M. (2006). Synthesis, structure and transformations of 2-iminoimidazolidines into novel fused heterocyclic ring systems. Heterocycles, 68, 687–699.

    CAS  Google Scholar 

  20. Ramadas, K., & Janarthanan, N. (1998). A concise and convenient method for the synthesis of pure substituted thioureas. Journal of Chemical Research, Synopses, 1998, 228–229.

    Google Scholar 

  21. Ramadas, K., & Srinivasan, N. (1995). A convenient route to substituted thiocarbamides. Synthetic Communications, 25, 3381–3387.

    CAS  Google Scholar 

  22. Robbe, Y., Fernandez, J. P., Dubief, R., Chapat, J. P., Sentenac-Roumanou, H., & Fatome Mand Laval, J. D. (1982). Comparative radioprotective activity of various pentagonal compounds with two heteroatoms. Chimica Therapeutica, 17, 235–243 (in French).

    CAS  Google Scholar 

  23. Mohanta, P. K., Dhar, S., Samal, S. K., Ilaa, H., & Junjappa, H. (2000). 1-(Methyldithiocarbonyl)imidazole: a useful thiocarbonyl transfer reagent for synthesis of substituted thioureas. Tetrahedron, 56, 629–637.

    CAS  Google Scholar 

  24. Adelaere, B., Masson, S., Vallee, Y., & Labat, Y. (1992). Reaction of 2-mercaptobenzothiazole with diamines. Synthesis of o-aminobenzenethiol. Phosphorus, Sulfur and Silicon and the Related Elements, 69, 173–177.

    CAS  Google Scholar 

  25. Yan, P., Xie, Y., Qian, Y., & Liu, X. (1999). A cluster growth route to quantum-confined CdS nanowires. Chemical Communications, 1999, 1293–1294.

    Google Scholar 

  26. Brodu, W., & Dehmlow, E. V. (1983). Applications of phase transfer catalysis, 26.—thioureas by three-component reactions of amines, carbon tetrachloride, and sulfide ions. Liebigs Ann Chem, 1983, 1839–1843 (in German).

    Google Scholar 

  27. Rojo, N., Gallastegi, G., Barona, A., Gurtubay, L., Ibarra-Berastegi, G., & Elías, A. (2010). Biotechnology as an alternative for carbon disulfide treatment in air pollution control. Environmental Reviews, 18, 321–332.

    CAS  Google Scholar 

  28. Park, I. H., Kim, P., Gnana Kumar, G., & Nahm, K. S. (2016). The influence of active carbon supports toward the electrocatalytic behavior of Fe3O4 nanoparticles for the extended energy generation of dediatorless microbial fuel cells. Applied Biochemistry and Biotechnology, 179, 1170–1183.

    CAS  PubMed  Google Scholar 

  29. Wang, J., Liu, Z., & Zhou, Z. (2017). Improving pullulanase catalysis via reversible immobilization on modified Fe3O4@Polydopamine nanoparticles. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-017-2411-x.

  30. Prakasham, R. S., Devi, G. S., Rao, C. S., Sivakumar, V. S. S., Sathish, T., & Sarma, P. N. (2010). Nickel-impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Applied Biochemistry and Biotechnology, 160, 1888–1895.

    CAS  PubMed  Google Scholar 

  31. Jiang, J., Chan, A., Ali, S., Saha, A., Haushalter, K. J., Macrina Lam, W. L., Glasheen, M., Parker, J., Brenner, M., Mahon, S. B., Patel, H. H., Ambasudhan, R., Lipton, S. A., Pilz, R. B., & Boss, G. R. (2016). Hydrogen sulfide-mechanisms of toxicity and development of an antidote. Scientific Reports, 6, 20831.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sundrarajan, M., Suresh, J., & Gandhi, R. (2012). A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Digest Journal of Nanomaterial Biostructures, 7, 983–989.

    Google Scholar 

  33. Okita, T., LodgeJr, J. P., & Axelrod, H. D. (1971). Filter method for the measurement of atmospheric hydrogen sulfide. Environmental Science & Technology, 5, 532–534.

    CAS  Google Scholar 

  34. Ballabeni, M., Ballini, R., Bigi, F., Maggi, R., Parrini, M., Predieri, G., & Sartori, G. (1999). Synthesis of symmetrical N,N'-disubstituted thioureas and heterocyclic thiones from amines and CS2 over a ZnO/Al2O3 composite as heterogeneous and reusable catalyst. The Journal of Organic Chemistry, 64, 1029–1032.

    CAS  PubMed  Google Scholar 

  35. McKay, A. F., & Hatton, W. G. (1956). Amino acids II synthesis of cyclic guanidino acids. Journal of the American Chemical Society, 78, 1618–1620.

    CAS  Google Scholar 

  36. Hardtmann, G. E., Koletar, G., Pfister, O. R., Gogerty, J. H., & Iorio, L. C. (1975). Synthesis and biological evaluation of some 10-substituted 2,3-dihydroimidazo[2,1-b]quinazolin-5(10H)-ones, a new class of bronchodilators. Journal of Medicinal Chemistry, 18, 447–453.

    CAS  PubMed  Google Scholar 

  37. Vial, H., Calas, M., Escale, R., Vidal, V., Bressolle, F. and Ancelin, M. -L. (2005). Compounds with antiparasitic activity and medicines containing same. US Patent 2005-0176819, filled Jul 18, 2003, issued Aug 11, 2005.

  38. Sandin, H., Swanstein, M.-L., & Wellner, E. (2004). A fast and parallel route to cyclic isothioureas and guanidines with use of microwave-assisted chemistry. The Journal of Organic Chemistry, 69, 1571–1580.

    CAS  PubMed  Google Scholar 

  39. Shao, Y., Ding, Y., Jia, Z. L., Lu, X. M., Ke, Z. H., Xu, W. H., & Lu, G. Y. (2009). Synthesis and DNA cleavage activity of 2-hydrazinyl-1,4,5,6-tetrahydropyrimidine containing hydroxy group. Bioorganic & Medicinal Chemistry, 17, 4274–4279.

    CAS  Google Scholar 

  40. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6, 71–79.

    PubMed  Google Scholar 

  41. Ramadas, K., Janarthanan, N., & Velmathi, S. (1997). LAC sulfur assisted synthesis of symmetrical thioureas. Synthetic Communications, 27, 2255–2260.

    CAS  Google Scholar 

  42. Johnson, T. B., & Edens, C. O. (1942). Complex formations between iodine and μ-mercapto-dihydroglyoxalines. Journal of the American Chemical Society, 64, 2706–2708.

    CAS  Google Scholar 

  43. Liang, F., Tan, J., Piao, C., & Liu, Q. (2008). Carbon tetrabromide promoted reaction of amines with carbon disulfide: facile and efficient synthesis of thioureas and thiuram disulfides. Synthesis, 2008, 3579–3584.

    Google Scholar 

  44. Zhivotova, T. S., Gazaliev, A. M., Fazylov, S. D., Aitpaeva, Z. K., & Turdibekov, D. M. (2006). Synthesis and structure of some imidazolidine-2-thiones. Russian Journal of Organic Chemistry, 42, 448–450.

    CAS  Google Scholar 

  45. Allen, C. F. H., Edens, C. O., & Van Allan, J. (1955). Ethylene thiourea [2-imidazolidinethione]. Organic Syntheses, 26, 34.

    Google Scholar 

  46. Shaifullah Chowdhury, A. Z. M., Rahman Khandker, M. M., Bhuiyan, M. M. H., & Hossain, M. K. (2001). Synthesis of 5H-imidazo[1,2-a]thiopyrano[4′,3′:4,5]thieno[2,3-d]pyrimidine-5-one. Pakistan Journal of Scientific and Industrial Research, 44, 63–66.

    Google Scholar 

  47. Anary-Abbasinejad, M., Karimi, N., Mehrabi, H., & Ranjbar-Karimi, R. (2012). A simple route for the synthesis of symmetrical thiourea derivatives and amidinium cations by reaction between isocyanides, amines and carbon disulfide. Journal of Sulfur Chemistry, 33, 653–659.

    CAS  Google Scholar 

  48. Hardtmann, G. E. (1976). Tetracyclic imidazo[2,1-b]quinazolinone derivatives. US Patent 3963720, filled June 21, 1974, issued June 15, 1976.

  49. Davies, S. G., & Mortlock, A. A. (1993). Bifunctional chiral auxiliaries 5: the synthesis of 1,3-diacylimidazolidine-2-thiones and 1,3-diacylimidazolidin-2-ones from 1,2-diamines. Tetrahedron, 49, 4419–4438.

    CAS  Google Scholar 

  50. Zhang, L., Liu, W., Mao, F., Zhu, J., Dong, G., Jiang, H., Sheng, C., Miao, L., Huang, L., & Li, J. (2015). Discovery of benzylidene derivatives as potent Syk inhibitors: synthesis, SAR analysis, and biological evaluation. Archiv der Pharmazie - Chemistry in Life Sciences, 348, 463–674.

    CAS  Google Scholar 

  51. Marmillon, C., Bompart, J., Calas, M., Escale, R., & Bonnet, P. A. (2000). Solution parallel synthesis of cyclic guanidines. Heterocycles, 53, 1317–1328.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the University of Zabol especially Dr. Mohammad Allahbakhsh, deputy of Research and Technology, and Dr. Mansour Ghaffari-Moghaddam, dean of the Faculty of Science, for their support and assistance at the various stages this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Beyzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyzaei, H., Kooshki, S., Aryan, R. et al. MgO Nanoparticle-Catalyzed Synthesis and Broad-Spectrum Antibacterial Activity of Imidazolidine- and Tetrahydropyrimidine-2-Thione Derivatives. Appl Biochem Biotechnol 184, 291–302 (2018). https://doi.org/10.1007/s12010-017-2544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2544-y

Keywords

Navigation