Skip to main content
Log in

Overexpression of DnaJ-Like Chaperone Enhances Carotenoid Synthesis in Chlamydomonas reinhardtii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of functional carotenoids using microalgae may facilitate the commercialization of anti-aging nutritional supplements. The green alga Chlamydomonas reinhardtii uses a non-mevalonate (MEP) pathway for isopentenyl diphosphate (IPP) synthesis. Two enzymes thought to play important roles in this MEP pathway to IPP synthesis are 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and reductase (DXR). DnaJ-like chaperone (Orange protein) is thought to support phytoene synthase, a key enzyme in plant carotenoid synthesis. Genes for Orange (OR), DXS, and DXR were overexpressed via nuclear transformation into C. reinhardtii. CDS of OR, DXS, and DXR were amplified and connected with dual promoters of heat-shock protein 70A and ribulose bisphosphate carboxylase small chain 2. Compared with the parental strain, transformant CrOR#2 produced increased lutein and β-carotene (1.9-fold and 1.7-fold per cell, respectively). Transformant CrDXS#1 produced lutein and β-carotene at lower per-cell abundances than those for the parental strain. CrDXR#2 transformant produced lutein and β-carotene at higher per-cell abundances than their parental counterpart; however, these transformants produced lutein and β-carotene at lower per-medium abundances than their parental counterparts. These results suggest that OR protein supports phytoene synthase in C. reinhardtii and that the phytoene synthesis step is rate-limiting in carotenoid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18, 160–167.

    Article  CAS  Google Scholar 

  2. Takaichi, S. (2011). Carotenoids in algae: distributions, biosyntheses and functions. Marine Drugs, 9, 1101–1118.

    Article  CAS  Google Scholar 

  3. Christaki, E., Bonos, E., Giannenasa, I., & Florou-Paneria, P. (2013). Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture, 93, 5–11.

    Article  CAS  Google Scholar 

  4. Lohr, M., Schwender, J., & Polle, J. E. W. (2012). Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Science, 185, 9–22.

    Article  Google Scholar 

  5. Schwender, J., Gemünden, C., & Lichtenthaler, H. K. (2001). Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 212, 416–423.

    Article  CAS  Google Scholar 

  6. Vranová, E., Coman, D., & Gruissem, W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Physiology, 64, 665–700.

    Google Scholar 

  7. Rodríguez-Concepción, M. (2006). Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochemistry Reviews, 5, 1–15.

    Article  Google Scholar 

  8. Couso, I., Vila, M., Rodriguez, H., Vargas, M. A., & León, R. (2011). Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnology Progress, 27, 54–60.

    Article  CAS  Google Scholar 

  9. Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., Conlin, B. J., Paolillo, D. J., Garvin, D. F., Vrebalov, J., Kochian, L. V., Küpper, H., Earle, E. D., Cao, J., & Li, L. (2006). The cauliflower or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell, 18, 3594–3605.

    Article  CAS  Google Scholar 

  10. Kim, S. H., Ahn, Y. O., Ahn, M. J., Jeong, J. C., Lee, H. S., & Kwak, S. S. (2013). Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiology and Biochemistry, 70, 445–454.

    Article  CAS  Google Scholar 

  11. Bai, C., Rivera, S. M., Medina, V., Alves, R., Vilaprinyo, E., Sorribas, A., Canela, R., Capell, T., Sandmann, G., Christou, P., & Zhu, C. (2014). An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation. The Plant Journal, 77, 464–475.

    Article  CAS  Google Scholar 

  12. Zhou, X., Welsch, R., Yang, Y., Alvarez, D., Riediger, M., Yuan, H., Fish, T., Liu, J., Thannhauser, T. W., & Li, L. (2015). Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 112, 3558–3563.

    Article  CAS  Google Scholar 

  13. Kindle, K. L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 87, 1228–1232.

    Article  CAS  Google Scholar 

  14. Cao, M., Fu, Y., Guo, Y., & Pan, J. (2009). Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma, 235, 107–110.

    Article  CAS  Google Scholar 

  15. Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. The Journal of Experimental Botany, 59, 213–223.

    Article  CAS  Google Scholar 

  16. Schroda, M., Blocker, D., & Beck, C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant Journal, 21, 121–131.

    Article  CAS  Google Scholar 

  17. Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., Mendez, M., & Mayfield, S. P. (2012). Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PloS One, 7, e43349.

    Article  CAS  Google Scholar 

  18. Cordero, B. F., Couso, I., León, R., Rodríguez, H., & Vargas, M. Á. (2011). Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Applied Microbiology and Biotechnology, 91, 341–351.

    Article  CAS  Google Scholar 

  19. Wright, L. P., Rohwer, J. M., Ghirardo, A., Hammerbacher, A., Ortiz-Alcaide, M., Raguschke, B., Schnitzler, J. P., Gershenzon, J., & Phillips, M. A. (2014). Deoxyxylulose 5-phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in Arabidopsis. Plant Physiology, 165, 1488–1504.

    Article  CAS  Google Scholar 

  20. Lois, L. M., Rodríguez-Concepción, M., Gallego, F., Campos, N., & Boronat, A. (2000). Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. The Plant Journal, 22, 503–513.

    Article  CAS  Google Scholar 

  21. Rodríguez-Concepción, M., Ahumada, I., Diez-Juez, E., Sauret-Gueto, S., Lois, L. M., Gallego, F., Carretero-Paulet, L., Campos, N., & Boronat, A. (2001). 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. The Plant Journal, 27, 213–222.

    Article  Google Scholar 

  22. Rodríguez-Concepción, M., Querol, J., Lois, L. M., Imperial, S., & Boronat, A. (2003). Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit. Planta, 217, 476–482.

    Article  Google Scholar 

  23. Liang, C. W., Zhang, W., Zhang, X. W., Fan, X., Xu, D., Ye, N. H., Su, Z. L., Yu, J. S., & Yang, Q. L. (2016). Isolation and expression analyses of methyl-D-erythritol 4-phosphate (MEP) pathway genes from Haematococcus pluvialis. Journal of Applied Phycology, 28, 209–218.

    Article  CAS  Google Scholar 

  24. Hasunuma, T., Takeno, S., Hayashi, S., Sendai, M., Bamba, T., Yoshimura, S., & Miyake, C. (2008). Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. Journal of Bioscience and Bioengineering, 105, 518–526.

    Article  CAS  Google Scholar 

  25. Carretero-Paulet, L., Cairó, A., Botella-Pavía, P., Besumbes, O., Campos, N., Boronat, A., & Rodríguez-Concepción, M. (2006). Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Molecular Biology, 62, 683–695.

    Article  CAS  Google Scholar 

  26. Zhang, H., Niu, D., Wang, J., Zhang, S., Yang, Y., Jia, H., & Cui, H. (2015). Engineering a platform for photosynthetic pigment, hormone and membrane-related diterpenoid production in Nicotiana tabacum. Plant and Cell Physiology, 56, 2125–2138.

    Article  CAS  Google Scholar 

  27. Yang, J., Adhikari, M. N., Liu, H., Xu, H., He, G., Zhan, R., & Chen, W. (2012). Characterization and functional analysis of the genes encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 1-deoxy-d-xylulose-5- phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour. Molecular Biology Reports, 39, 8287–8296.

    Article  CAS  Google Scholar 

  28. Banerjee, A., Wu, Y., Banerjee, R., Li, Y., Yan, H. G., & Sharkey, T. D. (2013). Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. Journal of Biological Chemistry, 288, 16926–16936.

    Article  CAS  Google Scholar 

  29. Hao, G., Shi, R., Tao, R., Fang, Q., Jiang, X., Ji, H., Feng, L., & Huang, L. (2013). Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. F. alba. Plant Physiology and Biochemistry, 70, 21–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. T. Sugawara and Assist. Prof. Y. Manabe, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, for their support in the carotenoid analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Sawayama.

Electronic Supplementary Material

ESM 1

(DOCX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, T., Uraguchi, Y., Sanda, S. et al. Overexpression of DnaJ-Like Chaperone Enhances Carotenoid Synthesis in Chlamydomonas reinhardtii . Appl Biochem Biotechnol 184, 80–91 (2018). https://doi.org/10.1007/s12010-017-2521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2521-5

Keywords

Navigation