Skip to main content

Advertisement

Log in

Size-Selective Harvesting of Extracellular Vesicles for Strategic Analyses Towards Tumor Diagnoses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EV), typified by exosomes or microvesicles, are expected to be effective diagnostic markers for cancers. The sizes of the vesicles range from 20 to 1000 nm, but the size-dependent variations of the contents of EVs are still poorly understood. We succeeded in the size-selective harvesting of the vesicles by utilizing the molecular weight-dependent characteristics of a variety of polyethylene glycols (PEG) as precipitating reagents and analyzed the antigens displayed on the surfaces of the vesicles and the miRNAs included in the vesicles from each size group. As a result, the relatively larger (<100 nm) particles precipitated by PEG5k clearly exhibited the greatest amount of epithelial cell adhesion molecule (EpCAM), from both breast cancer (MCF-7) and colon cancer (HCT116) cells, and a larger quantity of microRNA (miRNA) specific to breast cancer cells (miRNA155 for MCF-7) seemed to be contained in the PEG-precipitated particles. The results demonstrated that the quantities of both the tumor-specific miRNA and protein were similarly distributed among the several classes of the size-sorted EVs and that the size-selective harvesting of EVs may be informative for strategic analyses towards the diagnoses of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 200, 373–383.

    Article  CAS  Google Scholar 

  2. Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820, 940–948.

    Article  CAS  Google Scholar 

  3. Trams, E. G., Lauter, C. J., Salem Jr., N., & Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta, 645, 63–70.

    Article  CAS  Google Scholar 

  4. Pan, B. T., Teng, K., & Wu, C. (1985). Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. Journal of Cell Biology, 101, 942–948.

    Article  CAS  Google Scholar 

  5. Harding, C., Hauser, J., & Stahl, P. (1984). Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. European Journal of Cell Biology, 35, 256–263.

    CAS  Google Scholar 

  6. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.

    Article  CAS  Google Scholar 

  7. Kharaziha, P., Ceder, S., Li, Q., & Panaretakis, T. (2012). Tumor cell-derived exosomes: a message in a bottle. Biochimica et Biophysica Acta, 1826, 103–111.

    CAS  Google Scholar 

  8. Hannafon, B. N., & Ding, W. Q. (2013). Intercellular communication by exosome-derived microRNAs in cancer. International Journal of Molecular Science, 14, 14240–14269.

    Article  Google Scholar 

  9. Catto, J. Q., Miah, S., Owen, H. C., Bryant, H., Myers, K., Dudziec, E., Larre, S., Milo, A. L., & Hamdy, F. C. (2009). Distinct micro RNA alterations characterize high- and low-grade bladder cancer. Cancer Research, 69, 8472–8481.

    Article  CAS  Google Scholar 

  10. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.

    Article  CAS  Google Scholar 

  11. Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry, 285, 17442–17452.

    Article  CAS  Google Scholar 

  12. Umezu, T., Ohyashiki, K., Kuroda, M., & Ohyashiki, J. H. (2013). Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene, 32, 2747–2755.

    Article  CAS  Google Scholar 

  13. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345.

    Article  CAS  Google Scholar 

  14. Ohno, S., Takahashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., Fujita, K., Mizutani, T., Ohgi, T., Ochiya, T., Gotoh, N., & Kuroda, M. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor micro RNA to breast cancer cells. Molecular Therapy, 21, 185–191.

    Article  CAS  Google Scholar 

  15. Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine, 183, 1161–1172.

    Article  CAS  Google Scholar 

  16. Escola, J. M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O., & Geuze, H. J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. Journal of Biological Chemistry, 273, 20121–20127.

    Article  CAS  Google Scholar 

  17. Wubbolts, R., Leckie, R. S., Veenhuizen, P. T., Schwarzmann, G., Möbius, W., Hoernschemeyer, J., Slot, J. W., Geuze, H. J., & Stoorvogel, W. (2003). Proteomic and biochemical analyses of human B cell-derived exosomes, potential implications for their function and multivesicular body formation. Journal of Biological Chemistry, 278, 10963–10972.

    Article  CAS  Google Scholar 

  18. Polson, A., Potgieter, G. H., Largier, J. F., Mears, G. E. F., & Joubert, F. J. (1964). The fractionation of protein mixtures by linear polymers of high molecular weight. Biochimica et Biophysica Acta, 82, 463–475.

    Article  CAS  Google Scholar 

  19. Juckes, I. R. (1971). Fractionation of proteins and viruses with polyethylene glycol. Biochimica et Biophysica Acta, 229, 535–546.

    Article  CAS  Google Scholar 

  20. Rider, M. A., Hurwitz, S. N., & Meckes Jr., D. G. (2016). ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific Reports, 6, 23978.

    Article  CAS  Google Scholar 

  21. McPherson, A. (1985). Use of polyethylene glycol in the crystallization of macromolecules. Methods in Enzymology, 114, 120–125.

    Article  CAS  Google Scholar 

  22. Atha, D. H., & Ingham, K. C. (1981). Mechanism of precipitation of proteins by polyethylene glycols. Journal of Biological Chemistry, 256, 12108–12117.

    CAS  Google Scholar 

  23. Fouz, N., Amid, A., & Hashim, Y. Z. H. (2014). Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain. Applied Biochemistry and Biotechnology, 173, 1618–1639.

    Article  CAS  Google Scholar 

  24. Nakata, B., Takashima, T., Ogawa, Y., Ishikawa, T., & Hirakawa, K. (2004). Serum CYFRA 21-1 (cytokeratin-19 fragments) is a useful tumour marker for detecting disease relapse and assessing treatment efficacy in breast cancer. British Journal of Cancer, 91, 873–878.

    CAS  Google Scholar 

  25. Jiang, S., Zhang, H. W., Lu, M. H., He, X. H., Li, Y., Gu, H., Liu, M. F., & Wang, E. D. (2010). MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Research, 70, 3119–3127.

    Article  CAS  Google Scholar 

  26. Corcoran, C., Friel, A. M., Duffy, M. J., Crown, J., & O’Driscoll, L. (2011). Intracellular and extracellular microRNAs in breast cancer. Clinical Chemistry, 57, 18–32.

    Article  CAS  Google Scholar 

  27. Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110, 13–21.

    Article  CAS  Google Scholar 

  28. Arakawa, T., & Timasheff, S. N. (1985). Mechanism of polyethylene glycol interaction with proteins. Biochemistry, 24, 6756–6762.

    Article  CAS  Google Scholar 

  29. Bhat, R., & Timasheff, S. N. (1992). Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Science, 1, 1133–1143.

    Article  CAS  Google Scholar 

  30. Zimmerman, S. B., & Trach, S. O. (1991). Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. Journal of Molecular Biology, 222, 599–620.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. T. Sakamoto and T. Takakura at Hitachi, Ltd. for helpful discussions and Ms. I. Makino and Ms. M. Shoji at Hitachi, Ltd. for experimental assistance.

Authors’ Contributions

CM and HN optimized and performed the size-selective separation of particles and performed the light scattering measurement experiments. CM performed all ELISA experiments and quantitative real-time PCR experiments. TY provided the starting materials and protocols for ELISA experiments and helped to write the manuscript. CM and HN prepared the figures and wrote the manuscript. All authors commented on the manuscript and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Nishida.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manri, C., Yokoi, T. & Nishida, H. Size-Selective Harvesting of Extracellular Vesicles for Strategic Analyses Towards Tumor Diagnoses. Appl Biochem Biotechnol 182, 609–623 (2017). https://doi.org/10.1007/s12010-016-2348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2348-5

Keywords

Navigation