Skip to main content
Log in

Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of hydraulic retention time (HRT), pH, and operating temperature (T OP) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1 ≤ HRT ≤ 3 days, 4 ≤ pH ≤ 6, 25 ≤ T OP ≤ 45 °C). Partial cubic models adequately approximated the corresponding response surfaces at α < 5 %. The physiological conditions for maximum acidification (0.4 g TVFA + EtOH/g VSadded) and the maximal degradation of VSS (47.5 %), carbohydrate (92.0 %), protein (17.7 %), and lipid (73.7 %) were different. Analysis of variance suggested that pH had a great effect on the responses in most cases, while T OP and HRT, and their interaction, were significant in some cases. Denaturing gradient gel electrophoresis analysis revealed that Sporanaerobacter acetigenes, Lactobacillus sp., and Eubacterium pyruvivorans-like microorganisms might be main contributors to the hydrolysis and acidogenesis of FRW. Biochemical methane potential test confirmed higher methane yield (538.2 mL CH4/g VSadded) from an acidogenic effluent than from raw FRW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Biotechnology, 3, 117–129.

    Article  CAS  Google Scholar 

  2. APHA–AWWA–WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  3. Atkinson, B., & Mavituna, F. (1991). Biochemical engineering and biotechnology handbook (2nd ed.). New York: Nature Press.

    Google Scholar 

  4. Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T., Siegrist, H., & Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology: A Journal of the International Association on Water Pollution Research, 45, 65–73.

    CAS  Google Scholar 

  5. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  6. Bodkhe, S. (2008). Development of an improved anaerobic filter for municipal wastewater treatment. Bioresource Technology, 99, 222–226.

    Article  CAS  Google Scholar 

  7. Cammarota, M. C., & Freire, D. M. G. (2006). A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technology, 97, 2195–2210.

    Article  CAS  Google Scholar 

  8. Choi, Y. J., Hur, S., Choi, B.-D., Konno, K., & Park, J. W. (2009). Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. Journal of Food Science, 74, C17–C24.

    Article  CAS  Google Scholar 

  9. Cirne, D. G., Delgado, O. D., Marichamy, S., & Mattiasson, B. (2006). Clostridium lundense sp. nov., a novel anaerobic lipolytic bacterium isolated from bovine rumen. International Journal of Systematic and Evolutionary Microbiology, 56, 625–628.

    Article  CAS  Google Scholar 

  10. Dighe, A. S., Shouche, Y. S., & Ranade, D. R. (1998). Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. International Journal of Systematic Bacteriology, 48, 783–791.

    Article  Google Scholar 

  11. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  12. Elefsiniotis, P., & Oldham, W. (1994). Substrate degradation patterns in acid-phase anaerobic digestion of municipal primary sludge. Environmental Technology, 15, 741–751.

    Article  CAS  Google Scholar 

  13. Follmann, M., Ochrombel, I., Kramer, R., Trotschel, C., Poetsch, A., Ruckert, C., Huser, A., Persicke, M., Seiferling, D., Kalinowski, J., & Marin, K. (2009). Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics, 10, 621.

    Article  Google Scholar 

  14. Foresti, E., Zaiat, M., & Vallero, M. (2006). Anaerobic processes as the core technology for sustainable domestic wastewater treatment: consolidated applications, new trends, perspectives, and challenges. Reviews in Environmental Science and Bio/Technology, 5, 3–19.

    Article  CAS  Google Scholar 

  15. Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P. and Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Management, 34, 875–885.

  16. Garrity, G., Brenner, D. J., Krieg, N. R. and Staley, J. R. (2005). Bergey’s manual® of systematic bacteriology, 2nd ed. New York: Springer.

  17. Green, S. J., Leigh, M. B. and Neufeld, J. D. (2010). Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 4137–4158). Heidelberg: Springer.

  18. Guerrero, L., Omil, F., Méndez, R., & Lema, J. M. (1999). Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Research, 33, 3281–3290.

    Article  CAS  Google Scholar 

  19. Hernandez-Eugenio, G., Fardeau, M.-L., Cayol, J.-L., Patel, B. K. C., Thomas, P., Macarie, H., Garcia, J.-L., & Ollivier, B. (2002). Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 1217–1223.

    CAS  Google Scholar 

  20. Hung, C.-H., Chang, Y.-T., & Chang, Y.-J. (2011). Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—a review. Bioresource Technology, 102, 8437–8444.

    Article  CAS  Google Scholar 

  21. Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., & Li, M. (2013). Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresource Technology, 143, 525–530.

    Article  CAS  Google Scholar 

  22. Jo, J. H., Jeon, C. O., Lee, D. S., & Park, J. M. (2007). Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. Journal of Biotechnology, 131, 300–308.

    Article  CAS  Google Scholar 

  23. Kim, M., & Chun, J. (2005). Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. International Journal of Food Microbiology, 103, 91–96.

    Article  CAS  Google Scholar 

  24. Kim, M., Gomec, C. Y., Ahn, Y., & Speece, R. E. (2003). Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environmental Technology, 24, 1183–1190.

    Article  CAS  Google Scholar 

  25. Kim, M., Song, M., Jo, M., Shin, S., Khim, J., & Hwang, S. (2010). Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater. Applied Microbiology and Biotechnology, 85, 1611–1618.

    Article  CAS  Google Scholar 

  26. Kim, W., Ryu, B.-G., Kim, S., Heo, S.-W., Kim, D., Kim, J., Jo, H., Kwon, J.-H., & Yang, J.-W. (2014). Quantitative analysis of microbial community structure in two-phase anaerobic digesters treating food wastewater. Korean Journal of Chemical Engineering, 31, 381–385.

    Article  CAS  Google Scholar 

  27. Kim, Y.-O., Kim, K.-K., Park, S., Kang, S.-J., Lee, J.-H., Lee, S.-J., Oh, T.-K., & Yoon, J.-H. (2010). Photobacterium gaetbulicola sp. nov., a lipolytic bacterium isolated from a tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology, 60, 2587–2591.

    Article  CAS  Google Scholar 

  28. Lee, J., Hwang, B., Koo, T., Shin, S. G., Kim, W., & Hwang, S. (2014). Temporal variation in methanogen communities of four different full-scale anaerobic digesters treating food waste-recycling wastewater. Bioresource Technology, 168, 59–63.

    Article  CAS  Google Scholar 

  29. Lim, B. S., Kim, B., & Chung, I. (2012). Anaerobic treatment of food waste leachate for biogas production using a novel digestion system. Environmental Engineering Research, 17, 41–46.

    Article  Google Scholar 

  30. Lim, S. J., Kim, B. J., Jeong, C. M., Choi, J. D. R., Ahn, Y. H., & Chang, H. N. (2008). Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresource Technology, 99, 7866–7874.

    Article  CAS  Google Scholar 

  31. Lu, J., Gavala, H. N., Skiadas, I. V., Mladenovska, Z., & Ahring, B. K. (2008). Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. Journal of Environmental Management, 88, 881–889.

    Article  CAS  Google Scholar 

  32. Mahmoud, N., Zeeman, G., Gijzen, H., & Lettinga, G. (2004). Anaerobic stabilisation and conversion of biopolymers in primary sludge—effect of temperature and sludge retention time. Water Research, 38, 983–991.

    Article  CAS  Google Scholar 

  33. McInerney, M. J. (1988). Anaerobic hydrolysis and fermentation of fats and proteins. In A. J. B. Zehnder (Ed.), Biology of anaerobic microorganisms (pp. 373–416) New York: Wiley.

  34. Min, K. S., Khan, A. R., Kwon, M. K., Jung, Y. J., Yun, Z., & Kiso, Y. (2005). Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids. Journal of Chemical Technology & Biotechnology, 80, 909–915.

    Article  CAS  Google Scholar 

  35. Min, K. S., Park, K. S., Jung, Y. J., Khan, A. R., & Kim, Y. J. (2002). Acidogenic fermentation: utilization of wasted sludge as a carbon source in the denitrification process. Environmental Technology, 23, 293–302.

    Article  CAS  Google Scholar 

  36. MOE. (2013). National waste statistical survey, 제4차 전국폐기물통계조사. Republic of Korea: Ministry of Environment.

    Google Scholar 

  37. Muyzer, G., De Waal, E., & Uitterlinden, A. (1993). Profiling of complex microbial population by DGGE analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  38. Myerson, A. (Ed.) (2002). Handbook of industrial crystallization. Newton, MA: Butterworth-Heinemann.

  39. Ofori-Boateng, C., & Lee, K. T. (2014). Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel, 119, 285–291.

    Article  CAS  Google Scholar 

  40. Puolanne, E., & Halonen, M. (2010). Theoretical aspects of water-holding in meat. Meat Science, 86, 151–165.

    Article  CAS  Google Scholar 

  41. Ramsay, I. R., & Pullammanappallil, P. C. (2001). Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation, 12, 247–256.

    Article  CAS  Google Scholar 

  42. Romanenko, L., Lysenko, A., Rohde, M., Mikhailov, V., & Stackebrandt, E. (2004). Psychrobacter maritimus sp. nov. and Psychrobacter arenosus sp. nov., isolated from coastal sea ice and sediments of the Sea of Japan. International Journal of Systematic and Evolutionary Microbiology, 54, 1741.

    Article  CAS  Google Scholar 

  43. Romero Aguilar, M. A., Fdez-Güelfo, L. A., Álvarez-Gallego, C. J., & Romero García, L. I. (2013). Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chemical Engineering Journal, 219, 443–449.

    Article  CAS  Google Scholar 

  44. Ruiz, E., Cara, C., Ballesteros, M., Manzanares, P., Ballesteros, I., & Castro, E. (2006) Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process. Applied Biochemistry and Biotechnology, 130, 631–643.

  45. Shin, S. G., Han, G., Lee, J., Cho, K., Jeon, E.-J., Lee, C., & Hwang, S. (2015). Characterization of food waste-recycling wastewater as biogas feedstock. Bioresource Technology, 196, 200–208.

    Article  CAS  Google Scholar 

  46. Shin, S. G., Han, G., Lim, J., Lee, C., & Hwang, S. (2010). A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research, 44, 4838–4849.

    Article  CAS  Google Scholar 

  47. Sikorski, Z. E. (Ed.) (2006) Chemical and functional properties of food components, third edition. Boca Raton, FL: CRC.

  48. Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Nashville, TN: Archae Press.

  49. Vaclavik, V. and Christian, E. W. (2013). Essentials of food science. New York: Springer.

  50. Vavilin, V. A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Management, 28, 939–951.

    Article  CAS  Google Scholar 

  51. Veeken, A., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69, 249–254.

    Article  CAS  Google Scholar 

  52. Vos, P. D. , Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H. and Whitman, W. B. (Ed.) (2009). Bergey’s manual of systematic bacteriology: volume 3: The Firmicutes. New York: Springer.

  53. Wallace, R. J., Chaudhary, L. C., Miyagawa, E., McKain, N., & Walker, N. D. (2004). Metabolic properties of Eubacterium pyruvativorans, a ruminal ‘hyper-ammonia-producing’ anaerobe with metabolic properties analogous to those of Clostridium kluyveri. Microbiology, 150, 2921–2930.

    Article  CAS  Google Scholar 

  54. Wallace, R. J., McKain, N., McEwan, N. R., Miyagawa, E., Chaudhary, L. C., King, T. P., Walker, N. D., Apajalahti, J. H. A., & Newbold, C. J. (2003). Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate. International Journal of Systematic and Evolutionary Microbiology, 53, 965–970.

    Article  CAS  Google Scholar 

  55. Wang, K., Yin, J., Shen, D., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource Technology, 161, 395–401.

    Article  CAS  Google Scholar 

  56. Warnecke, T., & Gill, R. (2005). Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microbial Cell Factories, 4, 1–8.

    Article  Google Scholar 

  57. Yang, K., Yu, Y., & Hwang, S. (2003). Selective optimization in thermophilic acidogenesis of cheese–whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Research, 37, 2467–2477.

    Article  CAS  Google Scholar 

  58. Yu, H. Q., & Fang, H. H. P. (2003). Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: influence of pH and temperature. Water Research, 37, 55–66.

    Article  CAS  Google Scholar 

  59. Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89, 670–679.

    Article  CAS  Google Scholar 

  60. Yuan, Q., Sparling, R., & Oleszkiewicz, J. A. (2011). VFA generation from waste activated sludge: effect of temperature and mixing. Chemosphere, 82, 603–607.

    Article  CAS  Google Scholar 

  61. Zayas, J. F. (Ed.) (1996). Functionality of proteins in food. Heidelberg: Springer.

  62. Zhang, B., He, P.-J., Fan, L., Shao, L.-M., & Wang, P. (2007). Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Research, 41, 4468–4478.

    Article  CAS  Google Scholar 

  63. Zhang, B., Zhang, L.-L., Zhang, S.-C., Shi, H.-Z., & Cai, W.-M. (2005). The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environmental Technology, 26, 329–339.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Korea Ministry of Environment (MOE) as “Knowledge-based environmental service (Waste to energy recycling) Human resource development Project” and also supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (no. 20144030200460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhwan Hwang.

Additional information

Gyuseong Han and Seung Gu Shin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(DOCX 45 kb)

ESM 4

(DOCX 27 kb)

ESM 5

(DOCX 29 kb)

ESM 6

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Shin, S.G., Lee, J. et al. Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature. Appl Biochem Biotechnol 180, 980–999 (2016). https://doi.org/10.1007/s12010-016-2147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2147-z

Keywords

Navigation