Skip to main content
Log in

Effect of Evolutionary Adaption on Xylosidase Activity in Thermotolerant Yeast Isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient use of xylose along with glucose is necessary for the economic production of lignocellulosic based biofuels. Xylose transporters play an important role in the microorganisms for efficient utilization of xylose. In the present study, a novel method has been developed for a rapid assay of xylose transport activity in the xylose-utilizing isolates and other known yeasts. An assay was conducted to compare the activity of β-xylosidase using p-nitrophenyl-β-d-xylopyranoside (pNPX) in the intact, intracellular, and extracellular yeasts cells showing xylose transporter. Saccharomyces cerevisiae (MTCC 170) showed no xylosidase activity, while little growth was observed in the xylose-containing medium. Although other yeasts, i.e., Kluyveromyces marxianus NIRE-K1 (MTCC 5933), K. marxianus NIRE-K3 (MTCC 5934), and Candida tropicalis (MTCC 230), showed xylosidase activity in intact, intracellular, and extracellular culture. The xylosidase activity in intact cell was higher than that of extracellular and intracellular activity in all the yeast cells. The enzyme activity was higher in case of K. marxianus NIRE-K1 and K. marxianus NIRE-K3 rather than the C. tropicalis. Further, better xylosidase activity was observed in adapted K. marxianus cells which were 2.79–28.46 % higher than that of native (non-adapted) strains, which indicates the significant improvement in xylose transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behera, S., Mohanty, R. C., & Ray, R. C. (2011). Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs. Appled Energy, 88, 212–215.

    Article  CAS  Google Scholar 

  2. Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophillic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717.

    Article  CAS  Google Scholar 

  3. Behera, S., Mohanty, R. C., & Ray, R. C. (2015). Batch ethanol production from cassava (Manihot esculenta Crantz.) flour using Saccharomyces cerevisiae cells immobilized in calcium alginate. Annals of Microbiology, 65, 779–783.

    Article  CAS  Google Scholar 

  4. Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Recent advances in production of bioethanol from lignocellulosic biomass. Chemical Engineering and Technology, 32, 517–526.

    Article  CAS  Google Scholar 

  5. Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2010). Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels, 1, 697–704.

    Article  CAS  Google Scholar 

  6. Arora, R., Behera, S., Sharma, N. K., Singh, R., Yadav, Y. K., & Kumar, S. (2014). Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. In N. R. Sharma, R. C. Thakur, M. Sharma, L. Parihar, & G. Kumar (Eds.), Exploring & basic sciences for next generation frontiers (pp. 143–146). New Delhi: Elsevier.

    Google Scholar 

  7. Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.

    Article  CAS  Google Scholar 

  8. Behera, S., Arora, R., Sharma, N. K., & Kumar, S. (2014). Fermentation of glucose and xylose sugar for the production of ethanol and xylitol by the newly isolated NIRE-GX1 yeast. In S. Kumar, A. K. Sarma, S. K. Tyagi, & Y. K. Yadav (Eds.), Recent advances in bio-energy research (Vol. 3, pp. 175–182). SSS-NIRE: Kapurthala.

    Google Scholar 

  9. Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2015). Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 38, 39–47.

    Article  CAS  Google Scholar 

  10. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production: current status. Appled Microbiology and Biotechnology, 63, 258–266.

    Article  CAS  Google Scholar 

  11. Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17, 320–326.

    Article  CAS  Google Scholar 

  12. Katahira, S., Mizuike, A., Fukuda, H., & Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharides assimilating yeast strain. Appled Microbiology and Biotechnology, 72, 1136–1143.

    Article  CAS  Google Scholar 

  13. Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. Journal of Industrial Microbiology and Biotechnology, 36, 1483–1489.

    Article  CAS  Google Scholar 

  14. Runquist, D., Hahn-Hagerdal, B., & Radström, P. (2010). Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 1–7.

    Article  Google Scholar 

  15. Bhalla, A., Bischoff, K. M., & Sani, R. K. (2014). Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnology, 14, 1–10.

    Article  Google Scholar 

  16. Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology Advances, 32, 316–332.

    Article  CAS  Google Scholar 

  17. Basaran, P., & Ozcan, M. (2008). Characterization of b-xylosidase enzyme from a Pichia stipitis mutant. Bioresource Technology, 99, 38–43.

    Article  CAS  Google Scholar 

  18. Shi, H., Li, X., Gu, H., Zhang, Y., Huang, Y., Wang, L., & Wang, F. (2013). Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnology for Biofuels, 6, 1–10.

    Article  CAS  Google Scholar 

  19. Bosetto, A., Justo, P. I., Zanardi, B., Venzon, S. P., Graciano, L., Santos, E. L., & Simao, R. C. G. (2016). Research project concerning fungal and bacterial β-xylosidases. Applied Biochemistry and Biotechnology, 178, 766–795.

    Article  CAS  Google Scholar 

  20. Knob, A., Terrasan, C. R. F., & Carmona, E. C. (2010). β-Xylosidases from filamentous fungi: an overview. World Journal of Microbiology and Biotechnology, 26, 389–407.

    Article  CAS  Google Scholar 

  21. Thakur, I. S., & Nakagoshi, N. (2011). Production of biofuels from lignocellulosic biomass in pulp and paper mill effluents for low carbon society. Journal of International Development Cooperation, 18, 1–12.

    Google Scholar 

  22. Linden, T., & Hahn-Hagerdal, B. (1989). Fermentation of lignocelluloses hydrolysates with yeasts and xylose isomerase. Enzyme and Microbial Technology, 11, 583–589.

    Article  CAS  Google Scholar 

  23. Manzanares, P., Ramon, D., & Querol, A. (1999). Screening of non-Saccharomyces wine yeasts for the production of b-D-xylosidase activity. International Journal of Food Microbiology, 46, 105–112.

    Article  CAS  Google Scholar 

  24. Shao, W., Xue, Y., Wu, A., Kataeva, I., Pei, J., Wu, H., & Wiegel, J. (2011). Characterization of a novel beta-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Applied and Environmental Microbiology, 77, 719–726.

    Article  CAS  Google Scholar 

  25. Anand, A., Kumar, V., & Satyanarayana, T. (2013). Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles, 17, 357–366.

    Article  CAS  Google Scholar 

  26. Huang, Z., Liu, X., Zhang, S., & Liu, Z. (2014). GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. Journal of Industrial Microbiology and Biotechnology, 41, 65–74.

    Article  CAS  Google Scholar 

  27. Leandro, M. J., Goncalves, P., & Spencer-Martins, I. (2006). Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochemical Journal, 395, 543–549.

    Article  CAS  Google Scholar 

  28. Hector, R., Qureshi, N., Hughes, S., & Cotta, M. (2008). Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Applied Microbiology and Biotechnology, 80, 675–684.

    Article  CAS  Google Scholar 

  29. Runquist, D., Fonseca, C., Radstrom, P., Spencer-Martins, I., & Hahn-Hagerdal, B. (2009). Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 82, 123–130.

    Article  CAS  Google Scholar 

  30. Chen, T., Zhang, J., Liang, L., Yang, R., & Lin, Z. (2009). An in vivo, label-free quick assay for xylose transport in Escherichia coli. Analytical Biochemistry, 390, 63–67.

    Article  CAS  Google Scholar 

  31. Wang, C., Shen, Y., Hou, J., Suo, F., & Bao, X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Analytical Biochemistry, 442, 241–248.

    Article  CAS  Google Scholar 

  32. Ren, C., Chen, T., Zhang, J., Liang, L., & Lin, Z. (2009). An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microbal Cell Factories, 8, 1–9.

    Article  Google Scholar 

  33. Lee, W. J., Kim, M. D., Ryu, Y. W., Bisson, L. F., & Seo, J. H. (2002). Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 60, 186–191.

    Article  CAS  Google Scholar 

  34. Stambuk, B. U., Franden, M. A., Singh, A., & Zhang, M. (2003). D-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 106, 255–265.

    Article  Google Scholar 

  35. Arora, R., Behera, S., Sharma, N. K., & Kumar, S. (2015). A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Frontiers in Microbiology, 6, 1–16.

    Google Scholar 

  36. Kumar, S. (2009). Bioethanol production from biomass. Ph.D thesis, IIT Roorkee .

  37. Arora, R., Behera, S., & Kumar, S. (2014). Comparative study of fermentation efficiency for bio-ethanol production by isolates. In S. Kumar, A. K. Sarma, S. K. Tyagi, & Y. K. Yadav (Eds.), Recent advances in bio-energy research (pp. 149–155). Kapurthala: SSS-NIRE, III.

    Google Scholar 

  38. Young, E., Lee, S. M., & Alper, H. (2010). Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnology for Biofuels, 3, 1–12.

    Article  Google Scholar 

  39. Subtil, T., & Boles, E. (2012). Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 5, 1–12.

    Article  Google Scholar 

  40. Lasrado, L. D., & Gudipati, M. (2013). Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydrate Polymers, 92, 1978–1983.

    Article  CAS  Google Scholar 

  41. Kuhad, R. C., Gupta, R., Khasa, Y. P., Singh, A., & Zhang, Y. H. P. (2011). Bioethanol production from pentose sugars: current status and future prospects. Renewable and Sustainable Energy Review, 15, 4950–4962.

    Article  CAS  Google Scholar 

  42. Smith, J., Van Rensburg, E., & Gorgens, J. F. (2014). Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnology, 15, 14–41.

    Google Scholar 

  43. Vilela, L. F., De Araujo, V. P., Paredes, R. S., Bon, E. P., Torres, F. A., Neves, B. C., & Eleutherio, E. C. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express, 26, 5–16.

    Google Scholar 

Download references

Acknowledgments

This study was funded by Ministry of New and Renewable Energy, Govt. of India for providing funds to carry out the research activities. We thank Prof. Y. K. Yadav, Director General, SSS-NIBE, Kapurthala, India for his valuable suggestions and encouragement for the completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S., Sharma, N.K., Arora, R. et al. Effect of Evolutionary Adaption on Xylosidase Activity in Thermotolerant Yeast Isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3. Appl Biochem Biotechnol 179, 1143–1154 (2016). https://doi.org/10.1007/s12010-016-2055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2055-2

Keywords

Navigation