Skip to main content

Advertisement

Log in

Effect of Initial Temperature Treatment on Phytochemicals and Antioxidant Activity of Azadirachta indica A. Juss

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate the effect of initial temperature treatment on phytochemical and antioxidant potential of commercially important plant Azadirachta indica A. Juss. The leaves were differentially treated after harvest at temperatures 4, −20, and 110 °C and at room temperature, separately. It was found that a quick drying process at 110 °C followed by air-drying helped in maximum retention of bioactive compounds and antioxidant activity, which was significantly higher than other processing methods. Correlation analysis revealed that total phenolic content (TPC) and total flavonoid content (TFC) can be a measure to assess the antioxidant potential using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays. Nitric oxide scavenging assay (NOSA) was insignificantly related to DPPH and FRAP. Also, FRAP and DPPH can be a predictive assay for each other, but not with NOSA. Thus, a quick drying process at 110 °C using an oven can be a cost-effective venture, especially in developing countries, for retaining the nutritive value and antioxidant activity of A. indica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sian, B. A. (2003). Dietary antioxidants—past, present and future? Trends in Food Science and Technology, 14, 93–98.

    Article  Google Scholar 

  2. Chen, C. H., Pearson, A. M., & Gray, J. I. (1992). Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chemistry, 43(3), 177–183.

    Article  CAS  Google Scholar 

  3. Bhatia, A. L., Kamal, R., Verma, G., Sharma, K. V., Vats, S., & Jain, M. (2008). Radioprotective role of gymnemic acid on mice: study on hepatic biochemical alterations. Asian Journal of Experimental Sciences, 22(3), 439–442.

    Google Scholar 

  4. Sharma, K., Singh, U., Vats, S., Priyadarsini, K., Bhatia, A., & Kamal, R. (2009). Evaluation of evidenced-based radioprotective efficacy of Gymnema sylvestre leaves in mice brain. Journal of Environmental Pathology, Toxicology and Oncology, 28(4), 311–323.

    Article  Google Scholar 

  5. Vats, S., & Kamal, R. (2014). Identification of flavonoids and antioxidant potential of Cassia tora L. American Journal of Drug Discovery and Development, 4(1), 50–57.

    Article  CAS  Google Scholar 

  6. Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Badyopadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science, 82, 1336–1345.

    CAS  Google Scholar 

  7. Moure, A., Cruz, J. M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., Nufiez, M. J., & Parajo, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171.

    Article  CAS  Google Scholar 

  8. AOAC. (1990). Official methods of analysis of the Association of Official analytical chemists (15th ed.). Arlington: A Association of Official analytical chemists.

    Google Scholar 

  9. Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug and Analysis, 10, 178–182.

    CAS  Google Scholar 

  10. Vats, S. (2012). Antioxidant activity of callus culture of Vigna unguiculata (L.) Walp. Researcher, 4(6), 22–24.

    Google Scholar 

  11. Badami, S., Moorkoth, S., Rai, S. R., Kannan, E., & Bhojraj, S. (2003). Antioxidant activity of Caesalpinia sappan heartwood. Biological and Pharmaceutical Bulletin, 26(11), 1534–1537.

    Article  CAS  Google Scholar 

  12. Ibanez, E., Kubátová, A., Señoráns, F. J., Cavero, S., Reglero, G., & Hawthorne, S. B. (2003). Subcritical water extraction of antioxidant compounds from rosemary plants. Journal of Agricultural and Food Chemistry, 51(2), 375–382.

    Article  CAS  Google Scholar 

  13. Luckner, M. (1990). Secondary metabolism in microorganisms, plants and animals (3rd ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  14. Perez-Fons, L., Garzon, M. T., & Micol, V. (2010). Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. Journal of Agriculture and Food Chemistry, 58, 161–171.

    Article  CAS  Google Scholar 

  15. Li, H., Hao, Z., Wang, X., Huang, L., & Li, J. (2009). Antioxidant activities of extracts and fractions from Lysimachia foenum-graecum Hance. Bioresource Technology, 100, 970–974.

    Article  CAS  Google Scholar 

  16. Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., De Pasquale, A., & Saija, A. (2005). Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry, 89(4), 549–554.

    Article  CAS  Google Scholar 

  17. Markham, K. R. (1982). Techniques of flavonoid identification, Vol 31. London: Academic press.

    Google Scholar 

  18. Prabhu, S., & Barrett, D. M. (2009). Effects of storage condition and domestic cooking on the quality and nutrient content of African leafy vegetables (Cassia tora and Corchorus tridens). Journal of the Science of Food and Agriculture, 89(10), 1709–1721.

    Article  CAS  Google Scholar 

  19. Leja, M., Mareczek, A., Starzyńska, A., & Rożek, S. (2001). Antioxidant ability of broccoli flower buds during short-term storage. Food Chemistry, 72(2), 219–222.

    Article  CAS  Google Scholar 

  20. Zhang, D., & Hamauzu, Y. (2003). Antioxidant activity and total phenolics in post-harvest iceberg lettuce (Lactuca sativa). Acta Horticulturae, 628, 687–691.

    Article  CAS  Google Scholar 

  21. Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166–172.

    Article  CAS  Google Scholar 

  22. Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT--Food Science and Technology, 40(9), 1664–1669.

    Article  CAS  Google Scholar 

  23. Sies, H., & Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. The American Journal of Clinical Nutrition, 62(6), 1315S–1321S.

    CAS  Google Scholar 

  24. Hodges, D. M., Wismer, W. V., & Forney, C. F. (2001). Antioxidant responses in harvested leaves of two cultivars of spinach differing in senescence rates. Journal of the American Society for Horticultural Science, 126, 611–617.

    CAS  Google Scholar 

  25. Zee, J. A., Carmichael, L., Codere, D., Poirier, D., & Fournier, M. (1991). Effect of storage conditions on the stability of vitamin C in various fruits and vegetables produced and consumed in Quebec. Journal of Food Composition and Analysis, 4, 77–86.

    Article  CAS  Google Scholar 

  26. Yadav, S. K., & Sehgal, S. (1995). Effect of domestic processing on ascorbic acid and β-carotene content of spinach (Spinacia oleracea) and amaranth (Amaranthus tricolor) leaves. Plant Foods for Human Nutrition, 47, 125–131.

    Article  CAS  Google Scholar 

  27. Favell, D. J. (1998). A comparison of the vitamin C content of fresh and frozen vegetables. Food Chemistry, 62, 59–64.

    Article  CAS  Google Scholar 

  28. Nicoli, M. C., Anese, M., & Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science & Technology, 10(3), 94–100.

    Article  CAS  Google Scholar 

  29. Wang, J., Zhang, Q., Zhang, Z., Song, H., & Li, P. (2010). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46(1), 6–12.

    Article  CAS  Google Scholar 

  30. Ricciardolo, F. L., Sterk, P. J., Gaston, B., & Folkerts, G. (2004). Nitric oxide in health and disease of the respiratory system. Physiological Reviews, 84(3), 731–765.

    Article  CAS  Google Scholar 

  31. Halliwell, B. (1997). Antioxidants and human disease: a general introduction. Nutrition Review, 55, 44–49.

    Article  Google Scholar 

  32. Neill, S. O., Gould, K. S., Kilmartin, P. A., Mitchell, K. A., & Markham, K. R. (2002). Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant, Cell and Environment, 25, 539–547.

    Article  CAS  Google Scholar 

  33. Bandy, B., & Bechara, E. J. H. (2001). Bioflavonoid rescue of ascorbate at a membrane interface. Journal of Bioenergetics and Biomembranes, 33(4), 269–277.

    Article  CAS  Google Scholar 

  34. Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Vats.

Ethics declarations

Conflict of Interest

The author declares that there are no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vats, S. Effect of Initial Temperature Treatment on Phytochemicals and Antioxidant Activity of Azadirachta indica A. Juss. Appl Biochem Biotechnol 178, 504–512 (2016). https://doi.org/10.1007/s12010-015-1890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1890-x

Keywords

Navigation