Skip to main content

Advertisement

Log in

Immunodiagnostic Properties of Wucheraria bancrofti SXP-1, a Potential Filarial Diagnostic Candidate Expressed in Tobacco Plant, Nicotiana tabacum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Transgenic tobacco plants were developed expressing WbSXP-1, a diagnostic antigen isolated from the cDNA library of L3 stage larvae of Wucheraria bancrofti. This antigen produced by recombinant Escherichia coli has been demonstrated by to be successful as potential diagnostic candidate against lymphatic filariasis. A rapid format simple and qualitative flow through immune-filtration diagnostic kit has been developed for the identification of IgG antibodies to the recombinant WbSXP-1 and is being marketed by M/S Span Diagnostics Ltd in India and Africa. Here, we present the results of experiments on the transformation and expression of the same filarial antigen, WbSXP-1, in tobacco plant, Nicotiana tabacum, to produce plant-based diagnostic antigen. It was possible to successfully transform the tobacco plant with WbSXP-1, the integration of the parasite-specific gene in plants was confirmed by PCR amplification and the expression of the filarial protein by Western blotting. The immunoreactivity of the plant-produced WbSXP-1 was assessed based on its reaction with the monoclonal antibodies developed against the E. coli-produced protein. Immunological screening using clinical sera from patients indicates that the plant-produced protein is comparable to E. coli-produced diagnostic antigen. The result demonstrated that plants can be used as suitable expression systems for the production of diagnostic proteins against lymphatic filariasis, a neglected tropical infectious disease which has a negative impact on socioeconomic development. This is the first report of the integration, expression and efficacy of a diagnostic candidate of lymphatic filariasis in plants.

Key Message

Transgenic tobacco plants with WbSXP-1, a filarial diagnostic candidate, were developed. The plant-produced protein showed immunoreactivity on par with the E. coli product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dissanayake, S., Zheng, H., Dreyer, G., Xu, M., Watawana, L., Cheng, G., Wang, S., Morin, P., Deng, B., Kurniawan, L., Vincent, A., & Piessens, W. F. (1994). Evaluation of a recombinant parasite antigen for the diagnosis of lymphatic filariasis. American Journal of Tropical Medicine and Hygiene, 50, 727–734.

    CAS  Google Scholar 

  2. Weil, G., & Ramzy, R. M. R. (2006). Diagnostic tools for filariasis elimination programs. Trends in Parasitology, 2, 78.

    Google Scholar 

  3. Lalitha, P., Ravichandran, M., Suba, S., Kaliraj, P., Narayanan, R. B., & Jayaraman, K. (1998). Quantitative assessment of circulating antigens in human lymphatic filariasis: a field evaluation of monoclonal antibody-based ELISA using blood collected on filter strips. Tropical Medicine & International Health, 3, 41–45.

    Article  CAS  Google Scholar 

  4. Rao, K. V. N., Eswaran, D., Ravi, V., Gnanasekhar, B., Narayanan, R. B., Kaliraj, P., Jayaraman, K., Marson, A., Nithyakalyani, R., & Scott, A. L. (2000). The Wuchereria bancrofti Orthologue of Brugia malayi SXP1 and the diagnosis of Bancroftian Filariasis. Molecular and Biochemical Parasitology, 107, 71–80.

    Article  CAS  Google Scholar 

  5. Lalitha, P., Eswaran, D., Gnanasekar, M., Rao, K. V. N., Narayanan, R. B., Scott, A. L., Nutman, T. B., & Kaliraj, P. (2002). Development of antigen detection ELISA for the diagnosis of brugian and bancroftian filariasis using antibodies to recombinant filarial antigens BmSXP-1 and Wb-SXP-1. Microbiology and Immunology, 46(5), 327–332.

    Article  CAS  Google Scholar 

  6. Rahmah, N., Lim, B. H., Anuar, A. K., Shenoy, R. K., Kumaraswami, V., Hakim, S. L., Chotechuang, P., Kanjanopas, K., & Ramachandran, C. P. (2001). A recombinant antigen-based IgG4 ELISA for the specific and sensitive detection of Brugia malayi infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 280–284.

    Article  CAS  Google Scholar 

  7. Rahmah, N., Taniawati, S., Shenoy, R. K., Lim, B. H., Kumaraswami, V., Anuar, A. K., Hakim, S. L., Hayati, M. I. N., Chan, B. T., Suharni, M., & Ramachandran, C. P. (2001). Specificity and sensitivity of a rapid dipstick test (Brugia Rapid) in the detection of Brugia malayi infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 601–604.

    Article  CAS  Google Scholar 

  8. More, S. J., & Copeman, D. B. (1990). A highly specific and sensitive monoclonal antibody-based ELISA for the detection of circulating antigen in bancroftian filariasis. Tropical Medicine and Parasitology, 41, 403–406.

    CAS  Google Scholar 

  9. Weil, G. J., Lammie, P. J., & Weiss, N. (1997). The ICT filariasis test: a rapid format antigen test for diagnosis of Bancroftian filariasis. Parasitology Today, 13, 401–4041. –80.

    Article  CAS  Google Scholar 

  10. Bhaskar, V., Kanthan, L., Srikanth, T., Suba, S., Mody, H., Desai, P., & Kaliraj, P. (2004). Development and evaluation of a rapid flow through immunofiltration test using recombinant filarial antigen for diagnosis of brugian and bancroftian filariasis. Microbiology and Immunology, 48(7), 519–525.

    Article  Google Scholar 

  11. Wingfield, P. T., Palmer, I., Liang, S. M. (2001). Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Current Protocol Protein Science, Chapter 6: Unit 6.5. doi:10.1002/0471140864.ps0605s00.

  12. Wacker, M., Linton, D., Hitchen, P. G., et al. (2002). N-linked glycosylation in campylobacter jejuni and its functional transfer into E. coli. Science, 298(5599), 1790–1793.

    Article  CAS  Google Scholar 

  13. Tolia, N. H., & Joshua-Tor, L. (2006). Strategies for protein co expression in Escherichia coli. Nature Methods, 3(1), 55–64.

    Article  CAS  Google Scholar 

  14. Mason, H. S., Lam, D. M. K., & Arntzen, C. J. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proceedings of the National Academy of Science (USA), 89, 11745–11749.

    Article  CAS  Google Scholar 

  15. Tackets, C. O., Mason, H. S., Losonsky, G., Clements, J. D., Levine, M. M., & Arntzen, C. J. (1998). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nature Medicine, 4(5), 607–609.

    Article  Google Scholar 

  16. Rosales-Mendoza, S., Soria-Guerra, R. E., Moreno-Fierros, L., Han, Y., Alpuche-solis, A. G., & Korban, S. S. (2011). Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinis pestis are immunogenic in mice. Journal of Plant Physiology, 168, 174–180.

    Article  CAS  Google Scholar 

  17. Mathangi, G., Adhiseshan, P., Chakravarthi, M., Harunipriya, P., & Kaliraj, P. (2014). Immunogenicity of Brugia malayi Abundant Larval Transcript-2, a potential filarial vaccine candidate expressed in tobacco. Plant Cell Reports, 33, 179–188.

    Article  Google Scholar 

  18. Kathuria, S., Sriraman, R., Nath, R., Sack, M., Pal, R., Artsaenko, O., Talwar, G. P., Fischer, R., & Finnern, R. (2002). Efficacy of plant produced recombinant antibodies against HCg. Human Reproduction, 17(8), 2054–2061.

    Article  CAS  Google Scholar 

  19. He, J., Lai, H., Brock, C., Chen, Q. (2012). A novel system for rapid and cost-effective production of detection and diagnostic reagents of west Nile virus in plants. Journal of Biomedical Biotechnology, 1–10.

  20. Hoekema, A., Hooykaas, P. J. J., & Schilperoort, R. A. (1984). Transfer of the octopine T-DNA segment to plant cells mediated by different types of Agrobacterium tumor- or root-inducing plasmids: generality of virulence systems. Journal of Bacteriology, 158, 383–385.

    CAS  Google Scholar 

  21. Stewart, C. N., Jr., & Via, L. E. (1993). A rapid CTAB isolation technique for RAPD fingerprint and other PCR applications. Biotechniques, 14, 748–749.

    CAS  Google Scholar 

  22. Bhandari, P., & Gowrishankar, J. (1997). An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. Journal of Bacteriology, 179, 4403–4406.

    CAS  Google Scholar 

  23. Janardhan, S., Pandiaraja, P., Thirugnanam, S., Balamurali, M. N., Fernando, K., Mody, H. C., Desai, P. K., Meenakshisundaram, S., & Kaliraj, P. (2007). Production, purification and diagnostic application of filarial recombinant protein WbSXP-1 expressed in salt inducible Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 34, 675–683.

    Article  CAS  Google Scholar 

  24. Aziz, M. A., Singh, S., Anand, K. P., & Bhatnagar, R. (2002). Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochemical and Biophysical Research Communications, 299, 345–351.

    Article  CAS  Google Scholar 

  25. Elkholy, S. F., Ismail, R. M., Bahieldin, A., Sadik, A. S., & Madkour, M. A. (2009). Expression of hepatitis B surface antigen (HBsAg) gene in transgenic banana (Musa sp.). Arab Journal of Biotechnology, 12, 291–302.

    Google Scholar 

  26. Iannetta, P. P. M., James, E. K., McHardy, P. D., Sprent, J. I., & Minchin, F. R. (1993). An ELISA procedure for quantification of relative amount of intercellular glycoprotein in legume nodules. Annals of Botany, 71, 85–90.

    Article  CAS  Google Scholar 

  27. Pandey, V., Madhumathi, J., Karande, A. A., & Kaliraj, P. (2011). Antigen detection assay with parasite specific monoclonal antibodies for diagnosis of lymphatic filariasis. Clinica Chimica Acta, 412, 1867–1873.

    Article  CAS  Google Scholar 

  28. Harlow, E., & David, L. (1998). Using antibodies: a laboratory manual (2nd ed.). Cold Spring Harbour Laboratory Press: New York.

    Google Scholar 

  29. Cardineu, G.A., Curtis, III R. (1990). Oral immunization by transgenic plants. Patent, WO 1990002484 March 23, 1998.

  30. Bouche, F. B., Marquet-Blouin, E., Yanagi, Y., Steinmetz, A., & Muller, C. P. (2003). Neutralizing immunogenicity of a polyepitope antigen expressed in a transgenic food plant: a novel antigen to protect against measles. Vaccine, 21, 2065–2072.

    Article  CAS  Google Scholar 

  31. Sunilkumar, G. B., Ganapathi, T. R., Revathi, C. J., Prasad, K. S. N., & Bapat, V. A. (2003). Expression of hepatitis B surface antigen in tobacco cell suspension cultures. Protein Expression and Purification, 32, 10–17.

    Article  CAS  Google Scholar 

  32. Arlen, P. A., Singleton, M., Adamovicz, J. J., Ding, Y., Davoodi-Semiromi, A., & Daniel, H. (2008). Effective plague vaccination via oral delivery of plant cells expressing F1-Vs in chloroplasts. Infection and Immunity, 76, 3640–3650.

    Article  CAS  Google Scholar 

  33. Barta, A., Sommengruber, K., Thompson, D., Hartmuth, K., Matzke, M., & Matzke, A. (1986). The expression of nopaline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology, 6, 347–357.

    Article  CAS  Google Scholar 

  34. Staub, J. M., Garcia, B., Graves, J., Hajdukiewwicz, P. T., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J. A., Spatola, L., Ward, D., Ye, G., & Russel, D. A. (2000). High yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnology, 18(3), 333–338.

    Article  CAS  Google Scholar 

  35. Zhu, Z., Hughes, K., Huang, L., Sun, B., Liu, C., Li, Y. (1994). Expression of human α-interferon cDNA in transgenic rice plants. Plant Cell, Tissue and Organ Culture, 36(2), 197–204.

  36. Ruggiero, F., Exposito, J.-Y., Bournat, P., Gruber, V., Perret, S., Comte, J., Olagnier, B., Garrone, R., & Theisen, M. (2000). Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Letters, 469, 132–136.

    Article  CAS  Google Scholar 

  37. Merle, C., Perret, S., Lacour, T., Jonval, V., Hudaverdian, S., Garrone, R., Ruggiero, F., & Theisen, M. (2002). Hydroxylated human homotrimeric collagen in Agrobacterium tumefaciens mediated transient expression and in tranasgenic tobacco plants. FEBS Letters, 515, 114–118. 172:213–222.

    Article  CAS  Google Scholar 

  38. Yano, A., Maeda, F., & Takekoshi, M. (2004). Transgenic tobacco cells producing the human monoclonal antibodies for hepatitis B surface antigen. Journal of Medical Virology, 73, 208–215.

    Article  CAS  Google Scholar 

  39. Smith, M. L., Mason, H. S., & Shuler, M. L. (2002). Hepatitis B surface antigen (HBsAg) expression in plant cell culture: kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnology and Bioengineering, 80, 812–822.

    Article  CAS  Google Scholar 

  40. He, J., Lai, H., Engle, M., Gorlatov, S., Gruber, C., Steinkellner, H., Diamond, M.S. and Chen, Q. (2014a). Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS ONE, 9, e93541.

  41. He, J., Peng, L., Lai, H., Hurtado, J., Stahnke, J., & Chen, Q. (2014). A plant-produced antigen elicits potent immune responses against West Nile virus in mice. BioMed Research International, 2014, 1–10.

    Google Scholar 

  42. WHO (World Health Organization). (2003). Annual report on Lymphatic Filariasis 2002, Geneva 2003. http://whqlibdoc.who.int/hq/2003/WHO_CDS_CPE_CEE_2003.38.pdf

  43. Esterre, P., Plichart, C., Sechan, Y., & Nguyen, N. L. (2001). The impact of 34 years of massive DEC chemotherapy on Wuchereria bancrofti infection and transmission: the Maupiti cohort. Tropical Medicine & International Health, 6(3), 190–195.

    Article  CAS  Google Scholar 

  44. Melrose, W. D., Durrheim, D. D., & Burgess, G. W. (2004). Update on immunological tests for lymphatic filariasis. Trends in Parasitology, 6, 255.

    Article  Google Scholar 

  45. Lammie, P. J., Weil, G., Noordin, R., Kaliraj, P., Steel, C., et al. (2004). Recombinant antigen based antibody assays for diagnosis and surveillance of lymphatic filariasis—a multicenter trial. Filaria Journal, 3, 9.

    Article  Google Scholar 

  46. Zerpa, N. C., Wide, A., Noda, J., Bermudez, H., Pabon, R., & Noya, O. (2006). Immunogenicity of synthetic peptides derived from Plasmodium falciparum proteins. Experimental Parasitology, 113, 227.

    Article  CAS  Google Scholar 

  47. Hewer, R., & Meyer, D. (2007). Envelope-based HIV vaccine peptides as antigens in HIV-1 Immunodiagnostics. International Journal of Biotechnology, 9, 277.

    Article  Google Scholar 

  48. Purcell, A. W., McCluskey, J., & Rossjohn, J. (2007). More than one reason to rethink the use of peptides in vaccine design. Natural, 6, 404.

    CAS  Google Scholar 

  49. Pandiaraja, P., Arunkumar, C., Hoti, S. L., Rao, D. N., & Kaliraj, P. (2010). Evaluation of synthetic peptides of WbSXP-1 for the diagnosis of human lymphatic filariasis. Diagnostic Microbiology and Infectious Disease, 68(4), 410–415.

    Article  CAS  Google Scholar 

  50. Khoudi, H., Laberrge, S., Ferullo, J. M., Bazin, R., Darveau, A., Castonguay, Y., Allard, G., Lemeieux, R., & Vezina, L. P. (1999). Production of diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnology and Bioengineering, 64, 135–143.

    Article  CAS  Google Scholar 

  51. Austin, S., Bingham, E. T., Koegel, R. G., Mathews, D. E., Shahan, M. N., Straub, R. J., & Burgess, R. R. (1994). An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Annals of the New York Academy of Sciences, 721, 234–244.

    Article  CAS  Google Scholar 

  52. Mason, H. S., Ball, J., & Schi, J. J. (1996). Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity. Proceedings of the National Academy of Sciences of the United States of America, 93, 5335–5340.

    Article  CAS  Google Scholar 

  53. Alvarez, M. L., Topal, E., Martin, F., & Cardineau, G. A. (2010). Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant Molecular Biology, 72, 75–89.

    Article  CAS  Google Scholar 

  54. Ghosh, S., Malhotra, P., Lalitha, P. V., Guha-Mukherjee, S., & Chauhan, V. S. (2002). Expression of plasmodium falciparum C-terminal region of merozoite surface protein (PfMSP1 19), a potential malariavaccine candidate in tobacco. Plant Science, 162, 335–343.

    Article  CAS  Google Scholar 

  55. Cazzonelli, C. I., & Velten, J. (2006). An in vivo luciferase based Agrobacterium infiltration assay system: implications for post transcriptional gene silencing. Planta, 224, 582–597.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant (LS-30/2010) from WOS-A section of Department of Science & Technology, Government of India to Mathangi Ganapathy. The authors would like to thank The Director, Centre for Biotechnology, Anna University, Chennai for allowing access to the lab and the infrastructure. Thanks are also due to Dr. N. Subramoniam, Sugarcane Breeding Institute, Coimbatore, India for his expertise and to Mr. Jeyender Sethuraman and Mr. V. Kamalakannan for their help in statistical analysis.

Conflict of Interest

We declare that we have no conflict of interest.

Declaration

All human and animal studies have been approved by the appropriate ethics committee. All persons gave their informed consent prior to their inclusion in the study. Samples used were collected in accordance with US Department of Health and Human Services Human Experimentation Guidelines and the Department of Public Health, Chennai, Tamil Nadu, India. All of the procedures followed were in accordance with the guidelines issued by the Department of Public Health, Government of Tamil Nadu, India, for dealing with human subjects. The protocols adopted are also approved by the institutional review board at the Centre for Biotechnology, Anna University, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathangi Ganapathy or P. Kaliraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganapathy, M., Chakravarthi, M., Charles, S.J. et al. Immunodiagnostic Properties of Wucheraria bancrofti SXP-1, a Potential Filarial Diagnostic Candidate Expressed in Tobacco Plant, Nicotiana tabacum . Appl Biochem Biotechnol 176, 1889–1903 (2015). https://doi.org/10.1007/s12010-015-1685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1685-0

Keywords

Navigation