Skip to main content

Advertisement

Log in

Behaviors of Biomass and Kinetic Parameter for Nitrifying Species in A2O Process at Different Sludge Retention Time

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of sludge retention time (SRT) on biomass, kinetic parameters, and stoichiometric parameters of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in anaerobic/anoxic/oxic (A2O) process were explored in this study. The results showed that the growth rate constants were 1.52, 1.22, and 0.85 day−1, respectively, for AOB, those were 1.59, 1.19, and 0.87 day−1, respectively, for NOB when SRT was 20, 10, and 5 days. The lysis rate constants of AOB and NOB were 0.14 and 0.09 day−1, respectively. The yield coefficients were 0.23 and 0.22, respectively, for AOB and NOB. They did not change with SRT obviously. The biomass of AOB was 50.94, 26.35, and 14.68 mg L−1, respectively, and the biomass of NOB was 116.77, 60.00, and 44.25 mg L−1, respectively, at SRT of 20, 10, and 5 days. When SRT diminished from 20 to 5 days, the biomass of AOB and NOB diminished by 36.26 and 75.52 mg L−1, respectively. The removal efficiency of NH4 +–N diminished by 68.9 %. The removal efficiency of total nitrogen diminished by 42.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

b AOB :

Lysis rate constant of ammonia-oxidizing bacteria (1/T)

b NOB :

Lysis rate constant of nitrite-oxidizing bacteria (1/T)

OURAOB :

Oxygen uptake rate of ammonia-oxidizing bacteria (M/T L3)

OURH :

Oxygen uptake rate of heterotrophic bacteria (M/T L3)

OURNOB :

Oxygen uptake rate of nitrite-oxidizing bacteria (M/T L3)

S NH4 :

Concentration of ammonia (M/L3)

S NO2 :

Concentration of nitrite (M/L3)

S O2 :

Concentration of oxygen (M/L3)

X AOB :

Concentration of ammonia-oxidizing bacteria (M/L3)

X NOB :

Concentration of nitrite-oxidizing bacteria (M/L3)

Y AOB :

Yield coefficient of ammonia-oxidizing bacteria

Y NOB :

Yield coefficient of ammonia-oxidizing bacteria

μ AOB :

Growth rate constant of ammonia-oxidizing bacteria (1/T)

μ NOB :

Growth rate constant of nitrite-oxidizing bacteria (1/T)

References

  1. Tung, Y. T., & Pai, T. Y. (2014). Water management for agriculture, energy and social security in Taiwan. CLEAN Soil Air Water. doi:10.1002/clen.201300275.

    Google Scholar 

  2. Gao, D., Li, Z., Guan, J., Li, Y., & Ren, N. (2014). Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters. Chemosphere, 97, 130–134.

    Article  CAS  Google Scholar 

  3. Pai, T. Y., Ouyang, C. F., Su, J. L., & Leu, H. G. (2001). Modelling the steady-state effluent characteristics of the TNCU process under different return mixed liquid. Applied Mathematical Modelling, 25, 1025–1038.

    Article  Google Scholar 

  4. Pai, T. Y., Tsai, Y. P., Chou, Y. J., Chang, H. Y., Leu, H. G., & Ouyang, C. F. (2004). Microbial kinetic analysis of three different types of EBNR process. Chemosphere, 55, 109–118.

    Article  CAS  Google Scholar 

  5. Pai, T. Y., Chuang, S. H., Tsai, Y. P., & Ouyang, C. F. (2004). Modelling a combined anaerobic/anoxic oxide and rotating biological contactors process under dissolved oxygen variation by using an activated sludge - biofilm hybrid model. Journal of Environmental Engineering, ASCE, 130, 1433–1441.

    Article  CAS  Google Scholar 

  6. Pai, T. Y. (2007). Modeling nitrite and nitrate variations in A2O process under different return oxic mixed liquid using an extended model. Process Biochemistry, 42, 978–987.

    Article  CAS  Google Scholar 

  7. Zafiriadis, I., Ntougias, S., Kapagiannidis, A. G., & Aivasidis, A. (2013). Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic–anoxic system. Applied Biochemistry and Biotechnology, 171, 939–953.

    Article  CAS  Google Scholar 

  8. Cetecioglu, Z., Ince, B., Azman, S., & Ince, O. (2014). Biodegradation of tetracycline under various conditions and effects on microbial community. Applied Biochemistry and Biotechnology, 172, 631–640.

    Article  CAS  Google Scholar 

  9. Yang, Y., Huang, S., Zhang, Y., & Xu, F. (2014). Nitrogen removal by Chelatococcus daeguensis TAD1 and its denitrification gene identification. Applied Biochemistry and Biotechnology, 172, 829–839.

    Article  CAS  Google Scholar 

  10. Sollfrank, U., & Gujer, W. (1991). Characterization of domestic wastewater for mathematical modeling of the activated sludge process. Water Science and Technology, 23, 1057–1066.

    CAS  Google Scholar 

  11. Kappeler, J., & Gujer, W. (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling. Water Science and Technology, 25, 125–139.

    CAS  Google Scholar 

  12. Pai, T. Y., Wang, S. C., Lo, H. M., Chiang, C. F., Liu, M. H., Chiou, R. J., Chen, W. Y., Hung, P. S., Liao, W. C., & Leu, H. G. (2009). Novel modeling concept for evaluating the effects of cadmium and copper on heterotrophic growth and lysis rates in activated sludge process. Journal of Hazardous Materials, 166, 200–206.

    Article  CAS  Google Scholar 

  13. Pai, T. Y., Chang, H. Y., Wan, T. J., Chuang, S. H., & Tsai, Y. P. (2009). Using an extended activated sludge model to simulate nitrite and nitrate variations in TNCU2 process. Applied Mathematical Modelling, 33, 4259–4268.

    Article  Google Scholar 

  14. Pai, T. Y., Wang, S. C., Lin, C. Y., Liao, W. C., Chu, H. H., Lin, T. S., Liu, C. C., & Lin, S. W. (2009). Two types of organophosphate pesticides and their combined effects on heterotrophic growth rates in activated sludge process. Journal of Chemical Technology and Biotechnology, 84, 1773–1779.

    Article  CAS  Google Scholar 

  15. Pai, T. Y., Wan, T. J., Tsai, Y. P., Tzeng, C. J., Chu, H. H., Tsai, Y. S., & Lin, C. Y. (2010). Effect of sludge retention time on nitrifiers’ biomass and kinetics in an anaerobic/oxic process. CLEAN Soil Air Water, 38, 167–172.

    Article  CAS  Google Scholar 

  16. Pai, T. Y., Chiou, R. J., Tzeng, C. J., Lin, T. S., Yeh, S. C., Sung, P. J., Tseng, C. H., Tsai, C. H., Tsai, Y. S., Hsu, W. J., & Wei, Y. L. (2010). Variation of biomass and kinetic parameter for nitrifying species in TNCU3 process at different aerobic hydraulic retention time. World Journal of Microbiology & Biotechnology, 26, 589–597.

    Article  CAS  Google Scholar 

  17. Pai, T. Y., Chen, C. L., Chung, H., Ho, H. H., & Shiu, T. W. (2010). Monitoring and assessing variation of sewage quality and microbial functional groups in a trunk sewer line. Environmental Monitoring and Assessment, 171, 551–560.

    Article  CAS  Google Scholar 

  18. Pai, T. Y., Shyu, G. S., Chen, L., Lo, H. M., Chang, D. H., Lai, W. J., Yang, P. Y., Chen, C. Y., Liao, Y. C., & Tseng, S. C. (2013). Modelling transportation and transformation of nitrogen compounds at different influent concentrations in sewer pipe. Applied Mathematical Modelling, 37, 1553–1563.

    Article  Google Scholar 

  19. APHA, AWWA, WEF. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  20. Kappeler, J., & Brodmann, R. (1995). Low F/M bulking and scumming: towards a better understanding by modeling. Water Science and Technology, 31, 225–324.

    Article  CAS  Google Scholar 

  21. Nowak, O., Svardal, K., & Schweighofer, P. (1995). The dynamic behaviour of nitrifying activated sludge systems8 influenced by inhibiting wastewater compounds. Water Science and Technology, 31, 115–124.

    Article  CAS  Google Scholar 

  22. Wijffels, R. H., de Gooijer, C. D., Schepers, A. W., Beuling, E. E., Mallee, L. F., & Tramper, J. (1995). Dynamic modeling of immobilized Nitrosomonas europaea: implementation of diffusion limitation over expanding microcolonies. Enzyme and Microbial Technology, 17, 462–471.

    Article  CAS  Google Scholar 

  23. Tartakovsky, B., Kotlar, E., & Sheintuch, M. (1996). Coupled nitrification-denitrification processes in a mixed culture of coimmobilized cells: Analysis and experiment. Chemical Engineering Science, 51, 2327–2336.

    Article  CAS  Google Scholar 

  24. Pérez, J., Poughon, L., Dussap, C., & Montesinos, J. L. (2005). Dynamics and steady state operation of a nitrifying fixed bed biofilm reactor: mathematical model based description. Process Biochemistry, 40, 2359–2369.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Science Council of R.O.C. for financial support under the grant number NSC 97-2221-E-324-048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Yi Pai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, TY., Lo, HM., Wan, TJ. et al. Behaviors of Biomass and Kinetic Parameter for Nitrifying Species in A2O Process at Different Sludge Retention Time. Appl Biochem Biotechnol 174, 2875–2885 (2014). https://doi.org/10.1007/s12010-014-1233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1233-3

Keywords

Navigation