Skip to main content
Log in

Evaluation of Textile Dye Degradation Due to the Combined Action of Enzyme Horseradish Peroxidase and Hydrogen Peroxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetic parameters of the oxidant action of the combination of enzyme horseradish peroxidase (HRP) with hydrogen peroxide in the degradation of methylene blue dye were investigated. Twenty-one percent of color removal was obtained at pH 5.0 and temperature of 30 °C. Under these conditions, the kinetic parameters K m and V max of enzymatic reactions were determined for hydrogen peroxide in the absence of methylene blue dye (K m = 17.3 mM; V max = 1.97 mM/min) and in the presence of methylene blue dye (K m = 0.27 mM, V max = 0.29 μM/min). By means of analysis of phosphorescence, the presence of reactive oxygen species was detected in the form of singlet oxygen through the redox reaction between HRP and hydrogen peroxide. The existence of this reactive species is directly dependent on the concentration of hydrogen peroxide in the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crini, G. (2006). Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  2. Nigam, P., Robinson, T., Mcmullan, G., & Marchant, R. (2001). Bioresource Technology, 77, 247–255.

    Article  Google Scholar 

  3. Wu, Y., Taylor, K. E., Biswas, N., & Bewtra, J. K. (1999). Journal of Environmental Engineering, 125, 451–458.

    Article  CAS  Google Scholar 

  4. Bon, E. P. S., Leitão, V. S. F., & Da Silva, J. G. (2003). Applied Catalysis B: Environmental, 42, 213–221.

    Article  Google Scholar 

  5. Conn, E. E. & Stumpf, P. K. (1976), in Introdução à Bioquímica. Editora Edgard Blücher LTDA.

  6. Piatt, J. F., Chemma, A. S., & O’brien, P. J. (1977). FEBS Letters, 74, 251–254.

    Article  CAS  Google Scholar 

  7. Duran, N., Martinelli, V. C., Zinner, K., Kachar, B., & Cilento, G. (1979). FEBS Letters, 108, 266–268.

    Article  Google Scholar 

  8. Machado, A. E. H., Ruggiero, R., & Neumann, M. G. (1994). Quimica Nova, 17, 111–118.

    CAS  Google Scholar 

  9. Nakano, M., Kambayashi, Y., Tatsuzawa, H., Komiyama, T., & Fujimori, K. (1998). FEBS Letters, 432, 9–12.

    Article  CAS  Google Scholar 

  10. Nakano, M., Kambayashi, Y., Sano, Y., Hori, K., Fujimori, K., Misawa, N., Maruyama, T., & Tatsuzawa, H. (1998). FEBS Letters, 439, 329–333.

    Article  Google Scholar 

  11. Martinez, G. R., Medeiros, M. H. G., & Di Mascio, P. (2000). Quimica Nova, 23, 686–689.

    Article  CAS  Google Scholar 

  12. Konaka, R., Yamamoto, Y., Inoue, M., Chien, K. C., Dunlap, W. C., & Kasahara, E. (1999). Free Radical Biology & Medicine, 27, 294–300.

    Article  CAS  Google Scholar 

  13. Tokunaga, M., Shirogane, Y., Aoyama, H., Obora, Y., & Tsuji, Y. (2005). Journal of Organometallic Chemistry, 690, 5378–5382.

    Article  CAS  Google Scholar 

  14. Orellana, G., Villén, L., Manjón, F., & Fresnadillo, D. G. (2006). Applied Catalysis B: Environmental, 69, 1–9.

    Article  Google Scholar 

  15. Yuan, J., Song, B., & Wang, G. (2007). Talanta, 72, 231–236.

    Article  Google Scholar 

  16. Di Mascio, P., Bechara, E. J. H., Medeirosa, M. H. G., Brivibab, K., & Siesb, H. (1994). FEBS Letters, 355, 287–289.

    Article  Google Scholar 

  17. Crutchley, R. J., & Derosa, M. C. (2002). Coordination Chemistry Reviews, 233/234, 351–371.

    Article  Google Scholar 

  18. Salem, I. A., & El-Maazawi, M. S. (2000). Chemosphere, 41, 1173–1180.

    Article  CAS  Google Scholar 

  19. Nicell, J. A., & Wright, H. (1997). Enzyme and Microbial Technology, 21, 302–310.

    Article  CAS  Google Scholar 

  20. Nonell, S., & Flors, C. (2004). Journal of Photochemistry and Photobiology A: Chemistry, 163, 9–12.

    Article  Google Scholar 

  21. Wu, Y., Taylor, K. E., Biswas, N., & Bewtra, J. K. (1997). Water Research, 31, 2699–2704.

    Article  CAS  Google Scholar 

  22. Onder, S., Celebi, M., Altikatoglu, M., Hatipoglu, A., & Kuzu, H. (2011). Applied Biochemistry and Biotechnology, 163, 433–443.

    Article  CAS  Google Scholar 

  23. Liu, J., Wang, T., & Ji, L. (2006). Journal of Molecular Catalysis B: Enzymatic, 41, 81–86.

    Article  CAS  Google Scholar 

  24. Gholami-Borujeni, F., Mahvi, A. H., Nasseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Applied Biochemistry and Biotechnology, 165, 1274–1284.

    Article  CAS  Google Scholar 

  25. Altikatoglu, M., Celebi, M., Akdeste, Z. M., & Yildirim, H. (2012). Turkish Journal of Biochemistry, 37, 200–206.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Toyobo do Brasil for the donation of the enzyme, to CNPq (Brazilian Council for Scientific and Technological Development) for the financial support, and to David Ernest Nicodem of the Laboratory of Photochemistry of the Institute of Chemistry of UFRJ (Federal University of Rio de Janeiro) for the measurements of singlet oxygen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.R., da Costa, R.S., Yokoyama, L. et al. Evaluation of Textile Dye Degradation Due to the Combined Action of Enzyme Horseradish Peroxidase and Hydrogen Peroxide. Appl Biochem Biotechnol 174, 2741–2747 (2014). https://doi.org/10.1007/s12010-014-1222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1222-6

Keywords

Navigation