Skip to main content
Log in

Growth, Osmolyte Concentration and Antioxidant Enzymes in the Leaves of Sesuvium portulacastrum L. Under Salinity Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, growth and osmolyte concentration in the leaves of halophyte, Sesuvium portulacastrum, were studied with respect to salinity. Therefore, the changes in shoot growth, leaf tissue water content, osmolyte concentration (proline content, glycine betaine) and antioxidant enzymes [polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT)] were investigated. The 30-day old S. portulacastrum plants were subjected to 100, 200, 300, 400, 500 and 600 mM NaCl for 28 days. The plant growth was steadily increased up to 500 mM NaCl stress at 28 days. TWC was higher in 300 mM NaCl treated leaves than that of 600 mM NaCl. Salinity stress induced the accumulation of osmolyte concentration when compared to control during the study period. The antioxidant enzymes PPO, CAT and SOD were increased under salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Szabolcs, I. (1994). Indian J Exp Biol, 19, 768–770.

    Google Scholar 

  2. Demiral, T., & Turkan, I. (2004). J Plant Physiol, 161, 1089–1100.

    Article  CAS  Google Scholar 

  3. Mansour, M. M. F. (2000). Biology Plant, 43, 491–500.

    Article  CAS  Google Scholar 

  4. Gadallah, M. A. A. (1999). Biology Plant, 42, 249–257.

    Article  CAS  Google Scholar 

  5. Hernandez, J. A., Jimenez, A., Mullineaux, P., & Sevilla, F. (2000). Plant Cell Environ, 23, 853–862.

    Article  CAS  Google Scholar 

  6. Mittler, R. (2002). Trends Plant Sci, 7, 405–410.

    Article  CAS  Google Scholar 

  7. Koca, H., Bor, M., Özdemir, F., & Türkan, İ. (2007). Environmental and Experimental Botany, 60, 344–351.

    Article  CAS  Google Scholar 

  8. Messedi, D., Sleimi, N., & Abdelly, C. (2001). Plant Nutrition-Food Security and Sustainability of Agrosystems, 406–407.

  9. Slama, I., Ghnaya, T., Messedi, D., Hessini, K., Labidi, N., Savoure, A., & Abdelly, C. (2007). J Plant Res, 120, 291–299.

    Article  CAS  Google Scholar 

  10. Messedi, D., Labidi, N., Grignon, C., & Abdelly, C. (2004). Journal of Plant Nutrition and Soil Science, 167, 720–725.

    Article  CAS  Google Scholar 

  11. Schonfeld, M. A., Johnson, R. C., Carver, B. F., & Mornhinweg, D. W. (1988). Crop Sci, 28, 526–531.

    Article  Google Scholar 

  12. Bates, S., Waldren, R. P., & Teare, I. D. (1973). Plant and Soil, 39, 205–208.

    Article  CAS  Google Scholar 

  13. Grieve, C. M., & Grattan, S. R. (1983). Plant and Soil, 70, 303–307.

    Article  CAS  Google Scholar 

  14. Kumar, K. B., & Khan, P. A. (1982). Indian Journal of Experimental Botany, 20, 412–416.

    CAS  Google Scholar 

  15. Beauchamp, C., & Fridovich, I. (1971). Annu Rev Plant Physiol Plant Mol Biol, 44, 276–287.

    CAS  Google Scholar 

  16. Chandlee, J. M., & Scandalios, J. G. (1984). Theoretical Applied Genetics, 69, 71–77.

    CAS  Google Scholar 

  17. Bradford, M. M. (1976). Anal Biochem, 7, 248–254.

    Article  Google Scholar 

  18. Flowers, T. J., Bagheri, H. M. A., & Clipson, N. J. W. (1986). Q Rev Biol, 61, 313–317.

    Article  Google Scholar 

  19. Messedi, D., Sleimi, N., & Abdelly, C., (2003). Kluwer Academic Publishers, Dordrecht, 71–78

  20. Slama, I., Messedi, D., Ghnaya, T., Savoure, A., & Abdelly, C. (2006). Environmental and Experimental Botany, 56, 231–238.

    Article  CAS  Google Scholar 

  21. Azooz, M. M., Shaddad, M. A., & Abdel-Latef, A. A. (2004). Indian Journal of Plant Physiology, 9, 1–8.

    CAS  Google Scholar 

  22. Venkatesalu, V., Rajkumar, R., & Chellappan, K. P. (1994). J Plant Nutr, 17, 1635–1645.

    Article  CAS  Google Scholar 

  23. Demiral, T., & Turkan, I. (2006). Environmental and Experimental Botany, 56, 72–79.

    Article  CAS  Google Scholar 

  24. Kumar, S. G., Reddy, A. M., & Sudhakar, C. (2003). Plant Sci, 165, 1245–1251.

    Article  CAS  Google Scholar 

  25. Noctor, G., Arisi, A. C. M., Jouanin, L., Kunert, K. J., Rennenberg, H., & Foyer, C. H. (1998). Experimental Botany, 49, 623–647.

    CAS  Google Scholar 

  26. Das, M., Misra, M., & Misra, A. M. (1990). Journal of Plant physiology, 137, 244–246.

    Article  CAS  Google Scholar 

  27. Ozturk, L., & Demir, Y. (2003). Plant Growth & Regulations, 40, 89–95.

    Article  Google Scholar 

  28. Zawistowski, J., Biliaderis, C.G. & Michael, N.A. (1991). Elsevier Applied Science Ltd, London, 217–273

  29. Lin, C. C., & Kao, C. H. (2001). J Plant Physiol, 158, 667–671.

    Article  CAS  Google Scholar 

  30. Shim, I. S., Momose, Y., Yamamoto, A. H., Kim, D. W. A., & Usui, K. (2003). Plant Growth & Regulations, 39, 285–292.

    Article  CAS  Google Scholar 

  31. Pastori, G., Mullineaux, P., & Foyer, C. H. (2000). Plant Physiol, 122, 667–675.

    Article  CAS  Google Scholar 

  32. Bellaire, B. A., Carmody, J., Braud, J., Gosset, D. R., Banks, S. W., & Cran Lucas, M. (2000). Free Radic Res, 33, 531–545.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramesh Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, P.R., Deepa, S., Kanth, S.V. et al. Growth, Osmolyte Concentration and Antioxidant Enzymes in the Leaves of Sesuvium portulacastrum L. Under Salinity Stress. Appl Biochem Biotechnol 171, 1925–1932 (2013). https://doi.org/10.1007/s12010-013-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0475-9

Keywords

Navigation