Skip to main content
Log in

A Comparative Study of Anti-Candida Activity and Phenolic Contents of the Calluses from Lythrum salicaria L. in Different Treatments

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the study, anti-Candida activity and phenol contents of Lythrum salicaria L. calli and wild species have been evaluated. The seeds of L. salicaria (Lythraceae), collected from Lahidjan City in the north of Iran, were cultured in Murashige and Skoog medium (MSM) with a supplement, gibberellin, to germinate. Callus inductions were performed from segments of seedling on MSM containing different concentrations of plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The activity of calluses extracts, wild plant, gallic acid, and 3,3′,4′-tri-O-methylellagic acid-4-O-β-d-glucopyranoside (TMEG) as the main phenolic compounds against Candida albicans was assessed using cup plate diffusion method. The total phenols contents of calli and wild plant extracts were analyzed using Folin–Ciocalteu reagent. The callus formation in MSM supplemented with various concentrations of 2,4-D and BAP were 0–100 %. Anti-Candida activity of callus extract which obtained from MSM supplemented with 2,4-D and BAP (1 mg dm−3) was similar to the wild plant extract. Minimum inhibitory concentration values of gallic acid and TMEG were obtained as 0.312 and 2.5 mg cm−3, respectively. Gallic acid equivalent values in all treatments were from 0 to 288 μg GAE mg−1. Phenolic contents of plant aerial parts (331 ± 3.7 μg GAE mg−1) and the callus, which developed in MSM including 1 mg dm−3 of both 2,4-D and BAP, showed the same phenolic value and exhibited anti-Candida extract activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

MSM:

Murashige and Skoog Medium

GAE:

Gallic acid equivalent

TMEG:

3,3′,4′-tri-O-methylellagic acid-4-O-β-d-glucopyranoside

DMSO:

Dimethyl sulfoxide

DW:

Distilled water

TMS:

Trimethylsilane

References

  1. Misava, M. (1994). Plant tissue culture: an alternative for production of useful metabolite. FAO agricultural services bulletin 108, Bio International Inc, Toronto, Canada

  2. Verpoorte, R., Heijden, R., Hoge, J. H. C., & Hoopen, H. J. G. (1994). Plant cell biotechnology for the production of secondary metabolites. Pure and Applied Chemistry, 66, 2307–2310.

    Article  CAS  Google Scholar 

  3. Vermerris, W., & Nicholson, R. (2008). Phenolic compound biochemistry. Dordrecht: Springer.

    Google Scholar 

  4. Rechinger, K. (1968). Flora Iranica. Vol. 51, Akademische Druck-u, Verlagsanstalt Graz, Austria

  5. Soltani, A. (2011). Encyclopedia of traditional medicine (dictionary of medicinal plants). Tehran: Arjmand.

    Google Scholar 

  6. Mantle, D., Eddeb, F., & Pickering, A. T. (2000). Comparison of relative antioxidant activities of British medicinal plant species in vitro. Journal of Ethnopharmacology, 72, 47–51.

    Article  CAS  Google Scholar 

  7. Rauha, J. P., Remes, S., Heinonen, M., Hopia, A., Kahkonen, M., Kujala, T., et al. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3–12.

    Article  CAS  Google Scholar 

  8. Becker, H., Scher, J. M., Speakman, J. B., & Zapp, J. (2005). Bioactivity guided isolation of antimicrobial compounds from Lythrum salicaria. Fitoterapia, 76(6), 580–584.

    Article  CAS  Google Scholar 

  9. Lopez, V., Akerreta, S., Casanova, E., Garcia-Mina, J., Cavero, R., & Calvo, M. (2008). Screening of Spanish medicinal plants for antioxidant and antifungal activities. Pharmaceutical Biology, 46(9), 602–609.

    Article  CAS  Google Scholar 

  10. Coban, T., Citoglu, G. S., Sever, B., & Iscan, M. (2003). Antioxidant activities of plants used in traditional medicine in Turkey. Pharmaceutical Biology, 41(8), 608–613.

    Article  Google Scholar 

  11. Tunalier, Z., Kosar, M., Kupeli, E., Calis, I., & Can Baser, K. H. (2007). Antioxidant, anti-inflammatory, anti-nociceptive activities and composition of Lythrum salicaria L. extracts. Journal of Ethnopharmacology, 110(3), 539–547.

    Article  CAS  Google Scholar 

  12. Saltan Citoglu, G., & Altanlar, N. (2003). Antimicrobial activity of some plants used in folk medicine. Journal of Faculty of Pharmacy of Ankara, 32(3), 159–163.

    Google Scholar 

  13. Borchardt, J. R., Wyse, D. L., Sheaffe, C. C., Kauppi, K. L., Fulcher, R. G., Ehlke, N. J., et al. (2008). Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. Journal of Medicinal Plants Research, 2(5), 98–110.

    Google Scholar 

  14. Egan, M. E., & Lipsky, M. S. (2000). Diagnosis of vaginitis. American Family Physician, 62(5), 1095–1104.

    CAS  Google Scholar 

  15. Xia, E. Q., Deng, G. F., Guo, Y. J., & Li, H. B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences, 11, 622–646.

    Article  CAS  Google Scholar 

  16. Turker, A. U., Yucesan, B., & Gurel, E. (2009). An efficient in vitro regeneration system for Lythrum salicaria. Biologia Plantarum, 53(4), 750–754.

    Article  CAS  Google Scholar 

  17. Lenz, P., & Sussmuth, R. (1987). A highly sensitive bacterial assay for toxins based on swarming inhibition, and comparison with cup plate assay based on growth inhibition. Toxicology, 45(2), 185–191.

    Article  CAS  Google Scholar 

  18. Zhou, J., Xie, G., & Yan, Z. (2011). Encyclopedia of traditional Chinese medicines. Berlin: Springer.

    Google Scholar 

  19. Miliauskas, G., Venskutonis, P. R., & van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231–237.

    Article  CAS  Google Scholar 

  20. George, I. N., Amupitan, J. O., & Zhao, Y. M. (2008). Isolation and characterization of 2,3,8-tri-me ether ellagic acid from the stem bark of Irvingia gabonensis (Baill). Journal of Medicinal Plants Research, 2(9), 234–236.

    Google Scholar 

  21. Li, X. C., Elsohly, H. N., Hufford, C. D., & Clark, A. M. (1999). NMR assignments of ellegic acid derivatives. Magnetic Resonance in Chemistry, 37(11), 856–859.

    Article  CAS  Google Scholar 

  22. Yan, X. H., & Guo, Y. W. (2004). Two new ellagic acid glycosides from leaves of Diplopanax stachyanthus. Journal of Asian Natural Products Research, 6(4), 271–276.

    Article  CAS  Google Scholar 

  23. Bindra, R. S., Satti, N. K., & Suri, O. P. (1988). Isolation and structures of ellagic acid derivatives from Euphorbia acaulis. Phytochemistry, 27(7), 2313–2315.

    Article  CAS  Google Scholar 

  24. Li, X. C., Jacob, M. R., Pasco, D. S., Elsohly, H. N., Nimrod, A. C., Walker, L. A., et al. (2001). Phenolic compounds from Miconia myriantha inhibiting Candida aspartic. Journal of Natural Products, 64(10), 1282–1285.

    Article  CAS  Google Scholar 

  25. Thiem, B., & Goslinska, O. (2004). Antimicrobial activity of Rubus chamaemorus. Fitoterapia, 75(1), 93–95.

    Article  CAS  Google Scholar 

  26. Hegazi, G. M. (2011). In vitro studies on Delonix elata L. an endangered medicinal plant. World Applied Sciences Journal, 14(5), 679–686.

    Google Scholar 

  27. Sayed, S. S., Taie, H. A., & Taha, L. S. (2010). Micropropagation, antioxidant activity, total phenolics and flavonoids content of Gardenia jasminoides Ellis as affected by growth regulators. International Journal of Academic Research, 2(3), 184–191.

    Google Scholar 

  28. El-Baz, F. K., Mohamed, A. A., & Ali, S. I. (2010). Callus formation, phenolics content and related antioxidant activities in tissue culture of a medicinal plant colocynth (Citrullus colocynthis). Nova Biotechecnologica, 10(2), 79–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Khanavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manayi, A., Saeidnia, S., Faramarzi, M.A. et al. A Comparative Study of Anti-Candida Activity and Phenolic Contents of the Calluses from Lythrum salicaria L. in Different Treatments. Appl Biochem Biotechnol 170, 176–184 (2013). https://doi.org/10.1007/s12010-013-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0185-3

Keywords

Navigation