Skip to main content
Log in

Enhanced Exoglucanase Production by Brown Rot Fungus Fomitopsis sp. RCK2010 and its Application for Cellulose Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exoglucanase production by brown rot fungus Fomitopsis sp. RCK2010 was optimized under solid-state fermentation using Plackett–Burman design (PBD) and response surface methodology (RSM). Four fermentation variables (moisture, inoculum level, casein, and Triton X-100) were identified to effect cellulase production significantly by PBD, which were further optimized using RSM of central composite design. An overall 130 % increase in enzyme production was achieved by the optimization of variables using statistical approaches. Moreover, crude cellulase from Fomitopsis sp. RCK2010 was applied to saccharify pretreated Prosopis juliflora (cellulosic fraction), which resulted in the release of 327.35 mg/g of reducing sugars that could further be utilized for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Himmel, M. E., Ruth, M. F., & Wyman, C. E. (1999). Cellulase for commodity products from cellulosic biomass. Current Opinion in Biotechnology, 10, 358–364.

    Article  CAS  Google Scholar 

  2. Kuhad, R. C., Singh, A., & Eriksson, K. E. L. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology, 57, 46–125.

    Article  Google Scholar 

  3. Deswal, D., Sharma, A., Gupta, R., & Kuhad, R. C. (2012). Application of lignocellulolytic enzymes produced under solid state fermentation conditions. Bioresource Technology, 115, 249–254.

    Article  CAS  Google Scholar 

  4. Niranjane, A. P., Madhou, P., & Stevenson, T. W. (2007). The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean. Enzyme and Microbial Technology, 40, 1464–1468.

    Article  CAS  Google Scholar 

  5. Kuhad, R. C., Gupta, R., Khasa, Y. P., & Singh, A. (2010). Bioethanol production by Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresource Technology, 101, 8348–8354.

    Article  CAS  Google Scholar 

  6. Gupta, R., Sharma, K. K., & Kuhad, R. C. (2009). Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, woody substrate for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis NCIM 349. Bioresource Technology, 100, 1214–1220.

    Article  CAS  Google Scholar 

  7. Mathew, G. M., Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2008). Progress in research on fungal cellulases for lignocellulose degradation. Journal of Scientific and Industrial Research, 67, 898–907.

    CAS  Google Scholar 

  8. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspective. Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  9. Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. International Journal of Biological Science, 5, 578–595.

    Article  CAS  Google Scholar 

  10. Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Applied Biochemistry and Biotechnology, 142, 60–70.

    Article  CAS  Google Scholar 

  11. Baldrian, P., & Valaskova, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 32, 501–521.

    Article  CAS  Google Scholar 

  12. Green, F., III, & Highley, T. L. (1997). Mechanism of brown rot decay: paradigm or paradox. International Biodeterioration & Biodegradation, 39, 113–124.

    Article  CAS  Google Scholar 

  13. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown-rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102, 6065–6072.

    Article  CAS  Google Scholar 

  14. Lynd, L. R., Weimer, P. J., Zyl, W. H., & Pretorius, J. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  15. Farinas, C. S., Loyo, M. M., Junior, A. B., Tarioli, P. W., Neto, V. B., & Couri, S. (2010). Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. New Biotechnology, 27, 810–818.

    Article  CAS  Google Scholar 

  16. Diwaniyan, S., Sharma, K. K., & Kuhad, R. C. (2011). Laccase from an alkalitolerant basidiomycetes Crinipellis sp. RCK-1: production optimization by response surface methodology. Journal of Basic Microbiology, 51, 1–11.

    Article  Google Scholar 

  17. Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of cellulolytic enzyme system in mixed-culture solid state fermentation of soya bean hulls supplemented with wheat bran. Process Biochemistry, 45, 120–128.

    Article  CAS  Google Scholar 

  18. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305–325.

    Article  Google Scholar 

  19. Khurana, S., Kapoor, M., Gupta, S., & Kuhad, R. C. (2007). Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Indian Journal of Microbiology, 47, 144–152.

    Article  CAS  Google Scholar 

  20. Gupta, R., Khasa, Y. P., & Kuhad, R. C. (2011). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84, 1103–1109.

    Article  CAS  Google Scholar 

  21. Dhawan, S., & Kuhad, R. C. (2002). Effect of amino acids on laccase production from bird’s nest fungus Cythus bulleri. Bioresource Technology, 84, 35–38.

    Article  CAS  Google Scholar 

  22. Vasdev, K., Dhawan, S., Kapoor, R. K., & Kuhad, R. C. (2005). Biochemical characterization and molecular evidence of a laccase from the bird’s nest fungus Cyathus bulleri. Fungal Genetics and Biology, 42, 684–693.

    Article  CAS  Google Scholar 

  23. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  24. Miller, G. L. (1959). Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Hashemi, M., Razavi, S. H., Shojaosadati, S. A., Mousavi, S. M., Khajeh, K., & Safari, M. (2010). Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. Journal of Bioscience and Bioengineering, 110, 333–337.

    Article  CAS  Google Scholar 

  26. Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Applied Biochemistry and Microbiology, 142, 60–70.

    CAS  Google Scholar 

  27. Gupta, S., Kapoor, M., Sharma, K. K., Nair, L. M., & Kuhad, R. C. (2008). Production and recovery of an alkaline exo-polygalacturonase from Bacillus subtilis RCK under solid state fermentation using statistical approach. Bioresource Technology, 99, 937–945.

    Article  CAS  Google Scholar 

  28. Alam, M. Z., Muyib, S. A., & Wahid, R. (2008). Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic waste water sludge. Bioresource Technology, 99, 4709–4716.

    Article  CAS  Google Scholar 

  29. Soni, R., Nazir, A., & Chadha, B. S. (2010). Optimization of cellulase production by a versatile Aspergillus fumigates fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Industrial Crops and Products, 31, 277–283.

    Article  CAS  Google Scholar 

  30. Kuhad, R. C., Manchanda, M., & Singh, A. (1999). Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Engineering, 20, 47–125.

    Google Scholar 

  31. Schilling, J. S., Tewalt, J. P., & Duncan, S. M. (2009). Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology, 84, 465–475.

    Article  CAS  Google Scholar 

  32. Tewalt, J., & Schilling, J. (2010). Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum. Applied Microbiology and Biotechnology, 86, 1785–1793.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Ms. Abha Sharma and Mr. Bhuvnesh Shrivastava for proofreading the manuscript draft. Financial support from the Council of Scientific and Industrial Research, Government of India, New Delhi, India, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deswal, D., Gupta, R. & Kuhad, R.C. Enhanced Exoglucanase Production by Brown Rot Fungus Fomitopsis sp. RCK2010 and its Application for Cellulose Saccharification. Appl Biochem Biotechnol 168, 2004–2016 (2012). https://doi.org/10.1007/s12010-012-9913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9913-3

Keywords

Navigation