Skip to main content
Log in

Synthesis and Characterization of Doxorubicin-Loaded Poly(Lactide-co-glycolide) Nanoparticles as a Sustained-Release Anticancer Drug Delivery System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of the present study was to prepare a polymeric drug delivery system with no burst effect. To attain this goal, doxorubicin (Dox) as an effective anticancer drug was loaded into poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) to improve the drug performance and also maximize the release period. After the synthesis process, the freshly made PLGA NPs with two different lactide-to-glycolide ratios (75:25 and 50:50) were evaluated physically and chemically. To determine the encapsulation efficiency, a centrifugation method was applied. Also, the drug loading effect on particle size, polydispersity index, and zeta potential was examined. The results indicated that the NPs had nearly the same diameters around 360 nm, and the entrapment efficiencies for 75:25 PLGA and 50:50 PLGA were reported around 39 and 48 %, respectively. A slight increase in all parameters was observed due to the increase of the drug loading content. The primary release was 7.91 % (w/w) and 14.70 % (w/w) for 75:25 and 50:50 drug-loaded NPs, respectively; no burst effect was observed. After 20 days, the drug release was around 70.98 and 62.22 % of the total entrapped drug for 75:25 and 50:50 drug-loaded NPs, respectively. Finally, it was found that Dox was an appropriate anticancer agent with good capability to be encapsulated in polymeric NPs and could be released from the carriers with no burst effect and favor rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yadav, A. K., Mishra, P., Mishra, A. K., Mishra, P., Jain, S., & Prasad Agrawal, G. (2007). Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 246–257.

    Article  CAS  Google Scholar 

  2. American Cancer Society. (2009). Cancer facts & figures 2009. Atlanta, GA: American Cancer Society.

    Google Scholar 

  3. Chouhan, R., & Bajpai, A. K. (2009). Real time in vitro studies of doxorubicin release from PHEMA nanoparticles. Journal of Nanobiotechnology, 7, 5–16.

    Article  Google Scholar 

  4. Husseini, G. A., Rapoport, N. Y., Christensen, D. A., Pruitt, J. D., & Pitt, W. G. (2002). Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids and Surfaces. B, Biointerfaces, 24, 253–264.

    Article  CAS  Google Scholar 

  5. Bromberg, L., & Alakhov, V. (2003). Effects of polyether-modified poly(acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers. Journal of Controlled Release, 88, 11–22.

    Article  CAS  Google Scholar 

  6. Lebold, T., Jung, C., Michaelis, J., & Brauchle, C. (2009). Nanostructured silica materials as drug-delivery systems for doxorubicin: single molecule and cellular studies. Nano Letters, 9, 2877–2883.

    Article  CAS  Google Scholar 

  7. Chavanpatil, M. D., Khdair, A., & Panyam, J. (2007). Surfactant−polymer nanoparticles: a novel platform for sustained and enhanced cellular delivery of water-soluble molecules. Pharmaceutical Research, 24, 803–810.

    Article  CAS  Google Scholar 

  8. Weinberg, B. D., Elvin Blanco, H. A., Anderson, J. M., & Gao, J. (2007). Antitumor efficacy and local distribution of doxorubicin via intratumoral delivery from polymer millirods. Journal of Biomedical Materials Research. Part A, 81, 161–170.

    Article  Google Scholar 

  9. Brzozowska, M., & Krysinski, P. (2009). Synthesis and functionalization of magnetic nanoparticles with covalently bound electroactive compound doxorubicin. Electrochimica Acta, 54, 5065–5070.

    Article  CAS  Google Scholar 

  10. Nidhin, M., Indumathy, R., Sreeram, K. J., & Nair, B. U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31, 93–96.

    Article  CAS  Google Scholar 

  11. Chavanpatil, M. D., Khdair, A., Patil, Y., Handa, H., Mao, G., & Panyam, J. (2007). Polymer−surfactant nanoparticles for sustained release of water-soluble drugs. Journal of Pharmaceutical Sciences, 96, 3379–3389.

    Article  CAS  Google Scholar 

  12. Reddy, L. H., & Murthy, R. S. R. (2004). Pharmacokinetics and biodistribution studies of doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc, 148, 161–166.

    Article  CAS  Google Scholar 

  13. Reddy, L. H., Meda, N., & Murthy, R. R. (2005). Rapid and sensitive HPLC method for the estimation of doxorubicin in dog blood—the silver nitrate artifact. Acta Pharmaceutica, 55, 81–91.

    CAS  Google Scholar 

  14. Gao, J., Kou, G., Wang, H., Chen, H., Li, B., Lu, Y., et al. (2009). PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Research and Treatment, 115, 29–41.

    Article  CAS  Google Scholar 

  15. Italia, J. L., Datta, P., Ankola, D. D., & Ravi Kumar, M. N. V. (2008). Nanoparticles enhance per oral bioavailability of poorly available molecules: epigallocatechin gallate nanoparticles ameliorates cyclosporine induced nephrotoxicity in rats at three times lower dose than oral solution. Journal of Biomedical Nanotechnology, 4, 304–312.

    Article  CAS  Google Scholar 

  16. Gagliardi, M., Silvestri, D., Cristallini, C., Guadagni, M., Crifaci, G., & Giusti, P. (2010). Combined drug release from biodegradable bilayer coating for endovascular stents. Journal of Biomedical Materials Research B, 93, 375–385.

    Article  CAS  Google Scholar 

  17. Janes, K. A., Fresneau, M. P., Marazuela, A., Fabra, A., & Alonso, M. J. (2001). Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release, 73, 255–267.

    Article  CAS  Google Scholar 

  18. Gomez-Gaete, C., Tsapis, N., Besnard, M., Bochot, A., & Fattal, E. (2007). Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. International Journal of Pharmaceutics, 331, 153–159.

    Article  CAS  Google Scholar 

  19. Yoo, H. S., Lee, K. H., Oh, J. E., & Park, T. G. (2000). In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. Journal of Controlled Release, 68, 419–431.

    Article  CAS  Google Scholar 

  20. Sun, J. B., Duan, J. H., Dai, S. L., Ren, J., Guo, L., Jiang, W., et al. (2008). Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers from Magnetospirillum gryphiswaldense. Biotechnology and Bioengineering, 101, 1313–1320.

    Article  CAS  Google Scholar 

  21. Shen, Y., Jin, E., Zhang, B., Murphy, C. J., Sui, M., Zhao, J., et al. (2010). Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. Journal of the American Chemical Society, 132, 4259–4265.

    Article  CAS  Google Scholar 

  22. Varshney, L., & Dodke, P. B. (2004). Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization. Radiation Physics and Chemistry, 71, 1103–1111.

    Article  CAS  Google Scholar 

  23. Kalaria, D. R., Sharma, G., Beniwal, V., & Ravi Kumar, M. N. V. (2009). Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharmaceutical Research, 26, 492–501.

    Article  CAS  Google Scholar 

  24. Lanks, K. W., & Lehman, J. M. (1990). DNA synthesis by L929 cells following doxorubicin exposure. Cancer Research, 50, 4776–4778.

    CAS  Google Scholar 

  25. Kim, E. S., Durairaj, C., Kadam, R. S., Lee, S. J., Mo, Y., Geroski, D. H., et al. (2009). Human scleral diffusion of anticancer drugs from solution and nanoparticle formulation. Pharmaceutical Research, 26, 1155–1161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Amjadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amjadi, I., Rabiee, M., Hosseini, M.S. et al. Synthesis and Characterization of Doxorubicin-Loaded Poly(Lactide-co-glycolide) Nanoparticles as a Sustained-Release Anticancer Drug Delivery System. Appl Biochem Biotechnol 168, 1434–1447 (2012). https://doi.org/10.1007/s12010-012-9868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9868-4

Keywords

Navigation