Skip to main content
Log in

Bacterial Reduction of Cr(VI) at Technical Scale—The Malaysian Experience

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m3 bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 106 CFU mL−1 of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15–240 mg L−1 of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil–sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cushnie, G. C., Jr. (1985). Electroplating wastewater pollution control technology. Park Ridge, NJ: Noyes.

    Google Scholar 

  2. Shakoori, A. R., Makhdoom, M., & Haq, R. U. (2000). Applied Microbiology and Biotechnology, 53, 348–351.

    Article  CAS  Google Scholar 

  3. Megharaj, M., Avudaiyanagam, S., & Naidu, R. (2003). Current Microbiology, 47, 51–54.

    Article  CAS  Google Scholar 

  4. Garg, V. K., & Gupta, R. (2009). Vermicomposting of agro-industrial processing waste biotechnology for agro-industrial residues utilisation. In P. Singh nee’ Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues utilisation. New York: Springer.

    Google Scholar 

  5. Zhou, S. Q., Lu, W. D., & Zhou, X. (2010). Effects of heavy metals on planting watercress in kailyard soil amended by adding compost of sewage sludge. Process Safety and Environment Protection, 88, 263–268.

    Article  CAS  Google Scholar 

  6. Liu, J. N., Zhou, Q. X., Wang, X. F., Zhang, Q. R., & Sun, T. (2006). Potential of ornamental plant resources applied to contaminated soil remediation. In J. A. Teixeira da Silva (Ed.), Floriculture, ornamental and plant biotechnology: advances and topical issues (pp. 245–252). London: Global Science Books.

    Google Scholar 

  7. Hernández-Apaolaza, L., Gascó, A. M., Gascó, J. M., & Guerrero, F. (2005). Reuse of waste materials as growing media for ornamental plants. Bioresource Technology, 96, 125–131.

    Article  Google Scholar 

  8. Gupta, U. C., Kening, W. U., & Liang, S. (2008). Micronutrients in soils, crops, and livestock. Earth Sciences Frontiers, 15, 110–125.

    Article  CAS  Google Scholar 

  9. Ahmad, W. A., Zakaria, Z. A., Khasim, A. R., Alias, M. A., & Ismail, S. M. H. S. (2010). Pilot scale removal of chromium from industrial wastewater using the ChromeBacTM system. Bioresource Technology, 101, 4371–4378.

    Article  CAS  Google Scholar 

  10. Aidid, S. B., & Okamoto, H. (1993). Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. BioMetals, 6, 245–249.

    Article  CAS  Google Scholar 

  11. Jones, J. B., Jr. (2001). Laboratory guide for conducting soil tests and plant analysis (pp. 191–205). Boca Raton: CRC.

    Google Scholar 

  12. Radojevic, M., & Bashkin, V. N. (1999). Practical environment analysis (pp. 293–294). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  13. Andaleeb, F., Zia, M. A., Ashraf, M., & Khalid, Z. M. (2008). Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). Environmental Sciences, 20, 1475–1480.

    Article  Google Scholar 

  14. Lahouti, M., & Peterson, P. J. (1979). Chromium accumulation and distribution in crop plants. Journal of the Science of Food and Agriculture, 30, 136–142.

    Article  CAS  Google Scholar 

  15. Parr, P. D., & Taylor, F. G., Jr. (1980). Incorporation of chromium in vegetation through root uptake and foliar absorption pathways. Environmental and Experimental Botany, 20, 157–160.

    Article  CAS  Google Scholar 

  16. Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.

    Article  CAS  Google Scholar 

  17. Malandrino, M., Abollino, O., Buoso, S., Giacomino, A., Gioia, C. L., & Mentasti, E. (2011). Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere, 82, 169–178.

    Article  CAS  Google Scholar 

  18. Keskinkan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., & Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39, 179–183.

    Article  CAS  Google Scholar 

  19. Gardea-Torresdey, J. L., Rosa, G. D. L., Peralta-Videa, J. R., Montes, M., Cruz-Jimenez, G., & Cano-Aguilera, I. (2005). Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Environment Contamination and Toxicology, 48, 225–232.

    Article  CAS  Google Scholar 

  20. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). New York: Academic.

    Google Scholar 

  21. Cervantes, C., Garcia, J. C., Devars, S., Corona, F. G., Tavera, H. L., & Carlos, T. J. (2001). Interactions of chromium with micro-organisms and plants. Microbiological Reviews, 25, 335–347.

    Article  CAS  Google Scholar 

  22. Liu, D., Zou, J., Wang, M., & Jiang, W. (2008). Hexavalent chromium uptake and its effect on mineral uptake, antioxidant defense system and photosynthesis in Amaranthus viridis L. Bioresource Technology, 99, 2628–2636.

    Article  CAS  Google Scholar 

  23. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged the support from the Ministry of Higher Education (MOHE), Malaysia for the FRGS grant (vote 78532) and Universiti Teknologi Malaysia for the GUP grants (Q.J13000.7125.00H26 and Q.J13000.7125.00H52) as well as the Ministry of Science, Innovation and Technology (MOSTI), Malaysia for the National Science Fellowship scholarship to Norsuhada Abdul Karim and Universiti Pendidikan Sultan Idris for the SLAB scheme to Wan Haslinda Wan Ahmad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Akmar Zakaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakaria, Z.A., Ahmad, W.A., Zakaria, Z. et al. Bacterial Reduction of Cr(VI) at Technical Scale—The Malaysian Experience. Appl Biochem Biotechnol 167, 1641–1652 (2012). https://doi.org/10.1007/s12010-012-9608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9608-9

Keywords

Navigation