Skip to main content
Log in

A Novel endo-1,4-β-Mannanase from Bispora antennata with Good Adaptation and Stability over a Broad pH Range

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An endo-β-1,4-mannanase encoding gene, man5, was cloned from Bispora antennata CBS 126.38, which was isolated from a beech stump. The cDNA of man5 consists of 1,299 base pairs and encodes a 432-amino-acid protein with a theoretical molecular mass of 46.6 kDa. Deduced MAN5 exhibited the highest amino acid sequence identity of 58% to a β-mannanase of glycoside hydrolase family 5 from Aspergillus aculeatus. Recombinant MAN5 was expressed in Pichia pastoris and purified to electrophoretic homogeneity. The specific activity of the final preparation towards locust bean gum was 289 U mg−1. MAN5 showed optimal activity at pH 6.0 and 70 °C and had good adaptation and stability over a broad range of pH values. The enzyme showed more than 60% of peak activity at pH 3.0–8.0 and retained more than 80% of activity after incubation at 37 °C for 1 h in both acid and alkaline conditions (pH 4.0–11.0). The K m and V max values were 1.33 mg ml−1 and 444 μmol min−1 mg−1 and 1.17 mg ml−1 and 196 μmol min−1 mg−1 for locust bean gum and konjac flour, respectively. Of all tested metal ions and chemical reagents, Co2+, Ni2+, and β-mercaptoethanol enhanced the enzyme activity at 1 mM, whereas other chemicals had no effect on or partially inhibited the enzyme activity. MAN5 was highly resistant to acidic and neutral proteases (trypsin, α-chymotrypsin, collagenase, subtilisin A, and proteinase K). By virtue of the favorable properties of MAN5, it is possible to apply this enzyme in the paper and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Suurnäkki, A., Heijnesson, A., Buchert, J., Tenkanan, M., Viikari, L., & Westermark, V. (1996). Chemical characterization of the surface layers of unbleached pine and birch kraft pulp fibres. Journal of Pulp and Paper Science, 22, 78–83.

    Google Scholar 

  2. Kuhad, R. C., Singh, A., & Eriksson, K. E. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology, 57, 45–125.

    CAS  Google Scholar 

  3. McCleary, B. V. (1988). Purification of (1 → 3), (1 → 4)-β-D-glucan from barley flour. Methods in Enzymology, 160, 596–610.

    CAS  Google Scholar 

  4. Puls, J. (1997). Chemistry and biochemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis. Macromolecular Symposia, 120, 183–196.

    CAS  Google Scholar 

  5. Zhang, M., Chen, X., Zhang, Z., Sun, C., Chen, L., He, H., et al. (2009). Purification and functional characterization of endo-β-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Applied Microbiology and Biotechnology, 83, 865–873.

    CAS  Google Scholar 

  6. Dhawan, S., & Kaur, J. (2007). Microbial mannanases: An overview of production and applications. Critical Reviews in Biotechnology, 27, 197–216.

    CAS  Google Scholar 

  7. Xu, B., Sellos, D., & Janson, J. C. (2002). Cloning and expression in Pichia pastoris of a blue mussel (Mytilus edulis) β-mannanase gene. European Journal of Biochemistry, 269, 1753–1760.

    CAS  Google Scholar 

  8. Zahura, U. A., Rahman, M. M., Inoue, A., Tanaka, H., & Ojima, T. (2011). An endo-β-1,4-mannanase, AkMan, from the common sea hare Aplysia kurodai. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 159, 227–235.

    Google Scholar 

  9. Moreira, L. R., & Filho, E. X. (2008). An overview of mannan structure and mannan-degrading enzyme systems. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79, 165–178.

    CAS  Google Scholar 

  10. Shi, P., Yuan, T., Zhao, J., Huang, H., Luo, H., Meng, K., et al. (2010). Genetic and biochemical characterization of a protease-resistant mesophilic β-mannanase from Streptomyces sp. S27. Journal of Industrial Microbiology and Biotechnology, 38, 451–458.

    Google Scholar 

  11. Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal, 280, 309–316.

    CAS  Google Scholar 

  12. Zhao, Y., Zhang, Y., Cao, Y., Qi, J., Mao, L., Xue, Y., et al. (2011). Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: Implications for adaptation to alkaline conditions. PLoS One, 6, 1–12.

    CAS  Google Scholar 

  13. Yoon, K. H., & Lim, B. L. (2007). Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. Journal of Microbiology and Biotechnology, 17, 1688–1694.

    CAS  Google Scholar 

  14. Chen, X., Cao, Y., Ding, Y., Lu, W., & Li, D. (2007). Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. Journal of Biotechnology, 128, 452–461.

    CAS  Google Scholar 

  15. Luo, H., Wang, Y., Wang, H., Yang, J., Yang, Y., Huang, H., et al. (2009). A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Applied Microbiology and Biotechnology, 82, 423–461.

    Google Scholar 

  16. Duruksu, G., Ozturk, B., Biely, P., Bakir, U., & Ogel, Z. B. (2009). Cloning, expression and characterization of endo-β-1,4-mannanase from Aspergillus fumigatus in Aspergillus sojae and Pichia pastoris. Biotechnology Progress, 25, 271–276.

    CAS  Google Scholar 

  17. Zhao, J., Shi, P., Luo, H., Yang, P., Zhao, H., Bai, Y., et al. (2010). An acidophilic and acid-stable β-mannanase from Phialophora sp. P13 with high mannan hydrolysis activity under simulated gastric conditions. Journal of Agriculture and Food Chemistry, 58, 3184–3190.

    CAS  Google Scholar 

  18. Liu, Y. G., & Whittier, R. F. (1995). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 25, 674–681.

    CAS  Google Scholar 

  19. Sabini, E., Schubert, H., Murshudov, G., Wilson, K. S., Siika-Ahob, M., & Penttilä, M. (2000). The three-dimensional structure of a Trichoderma reesei β-mannanase from glycoside hydrolase family 5. Acta Crystallographica, 56, 3–13.

    CAS  Google Scholar 

  20. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99.

    CAS  Google Scholar 

  21. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    CAS  Google Scholar 

  22. Wang, H., Luo, H., Bai, Y., Wang, Y., Yang, P., Shi, P., et al. (2009). An acidophilic beta-galactosidase from Bispora sp. MEY-1 with high lactose hydrolytic activity under simulated gastric conditions. Journal of Agriculture and Food Chemistry, 57, 5535–5541.

    CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    CAS  Google Scholar 

  24. Yang, P., Shi, P., Wang, Y., Bai, Y., Meng, K., Luo, H., et al. (2007). Cloning and overexpression of a Paenibacillus beta-glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme. Journal of Microbiology and Biotechnology, 17, 58–66.

    Google Scholar 

  25. Christgau, S., Kauppinen, S., Vind, J., & Kofod, L. V. (1994). Expression cloning, purification and characterization of a beta-1,4-mannanase from Aspergillus aculeatus. Biochemisty and Molecular Biology International, 33, 917–925.

    CAS  Google Scholar 

  26. Tang, C., Guo, J., Wu, M., Zhao, S., Shi, H., Li, J., et al. (2011). Cloning and bioinformatics analysis of a novel acidophilic β-mannanase gene, Auman5A, from Aspergillus samii YL-01-78. World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-011-0775-6.

  27. Bauer, S., Vasu, P., Persson, S., Mort, A. J., & Somerville, C. R. (2006). Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proceedings of the National Academy of Sciences of the United States of America, 103, 11417–11422.

    CAS  Google Scholar 

  28. Song, J. M., Nam, K. W., Kang, S. G., Kim, C. G., Kwon, S. T., & Lee, Y. H. (2008). Molecular cloning and characterization of a novel cold-active β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 151, 32–40.

    Google Scholar 

  29. Araujo, A., & Ward, O. P. (1990). Extracellular mannanases and galactanases from selected fungi. Journal of Industrial Microbiology and Biotechnology, 6, 171–178.

    CAS  Google Scholar 

  30. Kote, N. V., Patil, A. G., & Mulimani, V. H. (2009). Optimization of the production of thermostable endo-β-1,4 mannanases from a newly isolated Aspergillus niger gr and Aspergillus flavus gr. Applied Biochemistry and Biotechnology, 152, 213–223.

    CAS  Google Scholar 

  31. Puchart, V., Vrsanská, M., Svoboda, P., Pohl, J., Ogel, Z. B., & Biely, P. (2004). Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigates IMI 385708. Biochimica et Biophysica Acta (BBA)—General Subjects, 1674, 239–250.

    CAS  Google Scholar 

  32. Arisan-Atac, I., Hodits, R., Kristufek, D., & Kubicek, C. P. (1993). Purification, and characterization of a β-mannanase of Trichoderma reesei C-30. Applied Microbiology and Biotechnology, 39, 58–62.

    CAS  Google Scholar 

  33. Ratanachomsri, U., Sriprang, R., Sornlek, W., Buaban, B., Champreda, V., Tanapongpipat, S., & Eurwilaichitr, L. (2006). Thermostable xylanase from Marasmius sp.: Purification and characterization. Journal of Biochemistry and Molecular Biology, 39, 105–110.

    CAS  Google Scholar 

  34. Cai, H., Shi, P., Huang, H., Luo, H., Bai, Y., Yang, P., et al. (2011). An acidic β-mannanase from Penicillium sp. C6: gene cloning and over-expression in Pichia pastoris. World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-011-0759-6.

  35. Naganagouda, K., Salimath, P. V., & Mulimani, V. H. (2009). Purification and characterization of endo-β-1,4 mannanase from Aspergillus niger gr for application in food processing industry. Journal of Microbiology and Biotechnology, 19, 1184–1190.

    CAS  Google Scholar 

  36. Takeda, N., Hirasawa, K., Uchimura, K., Nogi, Y., Hatada, Y., Usami, R., et al. (2004). Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic Bacillus sp. strain JAMB-750. Journal of Biological Macromolecules, 4, 67–74.

    CAS  Google Scholar 

  37. He, X., Liu, N., Li, W., Zhang, Z., Zhang, B., & Ma, Y. (2008). Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme and Microbial Technology, 43, 13–18.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Earmarked Fund for the Key Program of Transgenic Plant Breeding (2009ZX08003-020B) and the Agricultural Science and Technology Conversion Funds (2009 GB23260444).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peilong Yang or Bin Yao.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

The cDNA nucleotide and deduced amino acid sequences of man5. The putative signal peptide is underlined. The stop codon is indicated with an asterisk (JPEG 98 kb)

Fig. S2

The tertiary structure of MAN5 predicted with Accelrys Discovery Studio software using the GH 5 β-mannanase (PDB: 1QNO) from T. reesei (41% identity) as the template. The putative catalytic residues are indicated in black (JPEG 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Yang, P., Luo, H. et al. A Novel endo-1,4-β-Mannanase from Bispora antennata with Good Adaptation and Stability over a Broad pH Range. Appl Biochem Biotechnol 166, 1442–1453 (2012). https://doi.org/10.1007/s12010-011-9537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9537-z

Keywords

Navigation