Skip to main content
Log in

Construction of a Genetically Engineered Microorganism that Simultaneously Degrades Organochlorine and Organophosphate Pesticides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Field contamination with pesticide mixtures of organophosphates (OPs) and organochlorines (OCs) is becoming global issues to be solved urgently. The strategy of utilizing engineered microorganisms that have an ability to simultaneously degrade OPs and OCs has increasingly received great interest. In this work, an OP degradation gene (mpd) and an OC degradation gene (linA) were simultaneously introduced into Escherichia coli by using two compatible plasmids, resulting in strains with both OP degradation and OC degradation capabilities. To overcome the potential substrate uptake limitation, MPH was displayed on the cell surface of Escherichia coli using the N- and C-terminal domains of ice nucleation protein (INPNC) as an anchoring motif. The surface localization of INPNC–MPH was verified by cell fractionation, Western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, both LinA and green fluorescent protein (GFP) were functionally co-expressed in the MPH-displaying Escherichia coli. The engineered Escherichia coli degraded OPs as well as OCs rapidly, and it can be easily monitored by GFP fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar, S., Mukerji, K., Mukerji, K. G., & Lal, R. (1996). Critical Reviews in Microbiology, 22, 1–26.

    Article  CAS  Google Scholar 

  2. Sogorb, M. A., Vilanova, E., & Carrera, V. (2004). Toxicology Letters, 151, 219–233.

    Article  CAS  Google Scholar 

  3. Imai, R., Nagata, Y., Fukuda, M., Takagi, M., & Yano, K. (1991). Journal of Bacteriology, 173, 6811–6819.

    CAS  Google Scholar 

  4. Mulbry, W. W., & Karns, J. S. (1988). Journal of Bacteriology, 171, 6740–6746.

    Google Scholar 

  5. Dumas, D. P., Caldwell, S. R., Wild, J. R., & Raushel, F. M. (1989). Journal of Biological Chemistry, 264, 19659–19665.

    CAS  Google Scholar 

  6. Thomas, J. C., Berger, F., Jacquier, M., Bernillon, D., Baud-Grasset, F., Truffaut, N., Normand, P., Vogel, T. M., & Simonet, P. (1996). Journal of Bacteriology, 178, 6049–6055.

    CAS  Google Scholar 

  7. Wolber, P. K. (1993). Advances in Microbial Physiology, 34, 203–237.

    Article  CAS  Google Scholar 

  8. Schmid, D., Pridmore, D., Capitani, G., Battistuta, R., Nesser, J. R., & Jann, A. (1997). FEBS Letters, 414, 590–594.

    Article  CAS  Google Scholar 

  9. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Science, 263, 802–805.

    Article  CAS  Google Scholar 

  10. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., & Piston, D. W. (1997). Biophysical Journal, 73, 2782–2790.

    Article  CAS  Google Scholar 

  11. Larrainzar, E., O'Gara, F., & Morrissey, J. P. (2005). Annual Review of Microbiology, 59, 257–277.

    Article  CAS  Google Scholar 

  12. Elväng, A. M., Westerberg, K., Jernberg, C., & Jansson, J. K. (2001). Environmental Microbiology, 3, 32–42.

    Article  Google Scholar 

  13. Errampalli, D., Leung, K., Cassidy, M. B., Kostrzynska, M., Blears, M., Lee, H., & Trevors, J. T. (1999). Journal of Microbiological Methods, 35, 187–199.

    Article  CAS  Google Scholar 

  14. Li, L., Yang, C., Lan, W., Xie, S., Qiao, C., & Liu, J. (2008). Environmental Science and Technology, 42, 2136–2141.

    Article  CAS  Google Scholar 

  15. Yang, C., Cai, N., Dong, M., Jiang, H., Li, J., Qiao, C., Ashok, M., & Wilfred, C. (2008). Biotechnology and Bioengineering, 99, 30–37.

    Article  CAS  Google Scholar 

  16. Gupta, R., Sharma, P., & Vyas, V. V. (1995). Journal of Biotechnology, 41, 29–37.

    Article  CAS  Google Scholar 

  17. Novick, R. P. (1987). Microbiology and Molecular Biology Reviews, 51, 381–395.

    CAS  Google Scholar 

  18. Austin, S., & Nordstrom, K. (1990). Cell, 60, 351–354.

    Article  CAS  Google Scholar 

  19. Studier, F. W., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Methods in Enzymology, 185, 60–89.

    Article  CAS  Google Scholar 

  20. Wang, A. A., Ashok, M., & Wilfred, C. (2002). Applied and Environmental Microbiology, 68, 1684–1689.

    Article  CAS  Google Scholar 

  21. Nagata, Y., Hatta, T., Imai, R., Kimbara, K., Fukuda, M., Yano, K., & Takagi, M. (1993). Bioscience, Biotechnology, and Biochemistry, 57, 1582–1583.

    Article  CAS  Google Scholar 

  22. de Lorenzo, V., Eltis, L., Kessler, B., & Timmis, K. N. (1993). Gene, 123, 17–24.

    Article  Google Scholar 

Download references

Acknowledgement

We honestly would like to thank Prof. Dr. Y. Nagata of Kyoritsu University for providing Sphingomonas paucimobilis UT26 for this work. This work was supported by grants from the 863 Hi-Tech Research and Development Program of the People's Republic of China (No. 2007AA06Z335 and 2009AA06A417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanling Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Liu, R., Song, W. et al. Construction of a Genetically Engineered Microorganism that Simultaneously Degrades Organochlorine and Organophosphate Pesticides. Appl Biochem Biotechnol 166, 590–598 (2012). https://doi.org/10.1007/s12010-011-9450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9450-5

Keywords

Navigation