Skip to main content
Log in

Trehalose Has a Protective Effect on Human Brain-Type Creatine Kinase During Thermal Denaturation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated the effects of trehalose on thermal inactivation and aggregation of human brain-type creatine kinase (hBBCK) in this study. In the presence of 1.0 M trehalose, the midpoint temperature of thermal inactivation (T m) of hBBCK increased by 4.6 °C, and the activation energy (E a) for thermal inactivation increased from 29.7 to 41.1 kJ mol−1. Intrinsic fluorescence spectra also showed an increase in the apparent transition temperature (T 1/2) of hBBCK from 43.0 °C to 46.5 °C, 47.7 °C, and 49.9 °C in 0, 0.6, 0.8, and 1.2 M trehalose, respectively. In addition, trehalose significantly blocked the aggregation of hBBCK during thermal denaturation. Our results indicate that trehalose has potential applications as a thermal stabilizer and may aid in the folding of other enzymes in addition to hBBCK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CK:

Creatine kinase

hBBCK:

Recombinant human brain-type CK

T m :

Midpoint temperature of thermal inactivation

E a :

Activation energy

T 1/2 :

Apparent transition temperature of thermal denaturation

λ max :

Maximum emission wavelength

References

  1. Yancey, P. H. (2005). The Journal of Experimental Biology, 208, 2819–2830.

    Article  CAS  Google Scholar 

  2. Auton, M., & Bolen, D. W. (2005). Proceedings of the National Academy of Sciences of the United States of America, 102, 15065–15068.

    Article  CAS  Google Scholar 

  3. Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H., & Crowe, L. M. (1995). Applied and Environmental Microbiology, 61, 3592–3597.

    CAS  Google Scholar 

  4. Rajendrakumar, C. S. V., Suryanarayana, T., & Reddy, A. R. (1997). FEBS Letters, 410, 201–205.

    Article  CAS  Google Scholar 

  5. Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E., & Kinne, R. K. (2003). Reviews of Physiology Biochemistry and Pharmacology, 148, 1–80.

    Article  CAS  Google Scholar 

  6. Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). Glycobiology, 13, 17R–27R.

    Article  CAS  Google Scholar 

  7. Kaushik, J. K., & Bhat, R. (2003). The Journal of Biological Chemistry, 278, 26458–26465.

    Article  CAS  Google Scholar 

  8. Xie, G., & Timasheff, S. N. (1997). Biophysical Chemistry, 64, 25–43.

    Article  CAS  Google Scholar 

  9. Carninci, P., Nishiyama, Y., Westover, A., Itoh, M., Nagaoka, S., Sasaki, N., et al. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 520–524.

    Article  CAS  Google Scholar 

  10. Hengherr, S., Heyer, A. G., & Köhler, H. R. (2008). The FEBS Journal, 275, 281–288.

    Article  CAS  Google Scholar 

  11. Sun, W. Q., & Leopold, A. C. (1997). Comparative Biochemistry and Physiology A, 117, 327–333.

    Article  Google Scholar 

  12. Auton, M., Bolen, D. W., & Rösgen, J. (2008). Proteins, 73, 802–813.

    Article  CAS  Google Scholar 

  13. Bolen, D. W., & Baskakov, I. V. (2001). Journal of Molecular Biology, 310, 955–963.

    Article  CAS  Google Scholar 

  14. Crowe, J. H. (2007). Advances in Experimental Medicine and Biology, 594, 143–158.

    Article  Google Scholar 

  15. Sola-Penna, M., & Meyer-Fernandes, J. R. (1998). Archives of Biochemistry and Biophysics, 360, 10–14.

    Article  CAS  Google Scholar 

  16. Bessman, S. P., & Carpenter, C. L. (1985). Annual Review of Biochemistry, 54, 831–842.

    Article  CAS  Google Scholar 

  17. Lyubarev, A. E., Kurganov, B. I., Orlov, V. N., & Zhou, H. M. (1999). Biophysical Chemistry, 79, 199–204.

    Article  CAS  Google Scholar 

  18. He, H. W., Zhang, J., Zhou, H. M., & Yan, Y. B. (2005). Biophysical Journal, 89, 2650–2658.

    Article  CAS  Google Scholar 

  19. Gao, Y. S., Su, J. T., & Yan, Y. B. (2010). International Journal of Molecular Sciences, 11, 2584–2596.

    Article  CAS  Google Scholar 

  20. Chen, L. H., White, C. B., Babbitt, P. C., McLeish, M. J., & Kenyon, G. L. (2000). Journal of Protein Chemistry, 199, 59–66.

    Article  Google Scholar 

  21. Yao, Q. Z., Zhou, H. M., Hou, L. X., & Zou, C. L. (1982). Scientia Sinica, 25B, 1296–1302.

    Google Scholar 

  22. Turoverov, K. K., Haitlina, S. Y., & Pinaev, G. P. (1976). FEBS Letters, 62, 4–6.

    Article  CAS  Google Scholar 

  23. Feng, S., & Yan, Y. B. (2008). Proteins, 71, 844–854.

    Article  CAS  Google Scholar 

  24. Hottiger, T., Virgilio, C. D., Hall, M. N., Boller, T., & Wiemken, A. (1994). European Journal of Biochemistry, 219, 187–193.

    Article  CAS  Google Scholar 

  25. Bong, S. M., Moon, J. H., Nam, K. H., Lee, K. S., Chi, Y. M., & Hwang, K. Y. (2008). FEBS Letters, 582, 3959–3965.

    Article  CAS  Google Scholar 

  26. Aksenov, M., Aksenova, M., Butterfield, D. A., & Markesbery, W. R. (2000). Journal of Neurochemistry, 74, 2520–2527.

    Article  CAS  Google Scholar 

  27. Katz, I. A., Irwig, L., Vinen, J. D., March, L., Wyndham, L. E., Lu, T., et al. (1998). Annals of Clinical Biochemistry, 35, 393–399.

    Google Scholar 

  28. Liu, R., Barkhordarian, H., Emadi, S., Park, C. B., & Sierks, M. R. (2005). Neurobiology of Disease, 20, 74–81.

    Article  Google Scholar 

  29. Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N. R., Doi, H., et al. (2004). Natural Medicines, 10, 148–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of Key Science and Technology Innovation Teams of Zhejiang Province (grant nos. 2009R50031 and 2009R50031-1) from the Science and Technology Department of Zhejiang Province and the Zhejiang Provincial Top Key Discipline of Modern Microbiology and Application (grant nos. KF2010006 and KF2010007). Dr. Zi-Ping Zhang was supported by grant 30970635 of the China National Science Foundation, grant Y2101329 of the Zhejiang Provincial Science Foundation, and the grant of the Scientific and Technological Research Programs of Ning Xia Hui Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zi-Ping Zhang or Guo-Ying Qian.

Additional information

Jiang-Liu Yang and Hang Mu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JL., Mu, H., Lü, ZR. et al. Trehalose Has a Protective Effect on Human Brain-Type Creatine Kinase During Thermal Denaturation. Appl Biochem Biotechnol 165, 476–484 (2011). https://doi.org/10.1007/s12010-011-9266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9266-3

Keywords

Navigation