Skip to main content
Log in

Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s−1. Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose–response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). The New Phytologist, 178, 473–485.

    Article  CAS  Google Scholar 

  2. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  3. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157.

    Article  CAS  Google Scholar 

  4. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  5. Zhang, Y. H. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  6. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  7. Andersen, N., Johansen, K. S., Michelsen, M., Stenby, E. H., Krogh, K., & Olsson, L. (2008). Enzyme and Microbial Technology, 42, 362–370.

    Article  CAS  Google Scholar 

  8. Valjamae, P., Kipper, K., Pettersson, G., & Johansson, G. (2003). Biotechnology and Bioengineering, 84, 254–257.

    Article  Google Scholar 

  9. Decker, C. H., Visser, J., & Schreier, P. (2000). Journal of Agricultural and Food Chemistry, 48, 4929–4936.

    Article  CAS  Google Scholar 

  10. Gruno, M., Valjamae, P., Pettersson, G., & Johansson, G. (2004). Biotechnology and Bioengineering, 86, 503–511.

    Article  CAS  Google Scholar 

  11. Zhang, S. L. S., Qi, W., & He, Z. (2010). Applied Biochemistry and Biotechnology, 160, 1407–1414.

    Article  CAS  Google Scholar 

  12. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  13. Xiao, Z. Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113, 1115–1126.

    Article  Google Scholar 

  14. Lu, Y. F., Wang, Y. H., Xu, G. Q., Chu, J., Zhuang, Y. P., & Zhang, S. L. (2010). Applied Biochemistry and Biotechnology, 160, 360–369.

    Article  CAS  Google Scholar 

  15. Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioprods and Biorefining, 1, 119–134.

    Article  Google Scholar 

  16. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2009). Applied Biochemistry and Biotechnology, 152, 88–107.

    Article  CAS  Google Scholar 

  17. Kipper, K., Valjamae, P., & Johansson, G. (2005). The Biochemical Journal, 385, 527–535.

    Article  CAS  Google Scholar 

  18. Valjamae, P., Sild, V., Pettersson, G., & Johansson, G. (1998). European Journal of Biochemistry, 253, 469–475.

    Article  CAS  Google Scholar 

  19. Murphy, L., Borch, K., McFarland, K. C., Bohlin, C., & Westh, P. (2010). Enzyme and Microbial Technology, 46, 141–146.

    Article  CAS  Google Scholar 

  20. Eriksson, T., Karlsson, J., & Tjerneld, F. (2002). Applied Biochemistry and Biotechnology, 101, 41–60.

    Article  CAS  Google Scholar 

  21. Zhang, S., Wolfgang, D. E., & Wilson, D. B. (1999). Biotechnology and Bioengineering, 66, 35–41.

    Article  CAS  Google Scholar 

  22. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  23. Kabel, M. A., van der Maarel, M., Klip, G., Voragen, A. G. J., & Schols, H. A. (2006). Biotechnology and Bioengineering, 93, 56–63.

    Article  CAS  Google Scholar 

  24. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Biotechnology for Biofuels, 2, 10.

    Article  Google Scholar 

  25. Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870.

    Article  Google Scholar 

  26. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Bioresource Technology, 99, 8940–8948.

    Article  CAS  Google Scholar 

  27. Briggner, L. E., & Wadso, I. (1991). Journal of Biochemical and Biophysical Methods, 22, 101–118.

    Article  CAS  Google Scholar 

  28. Spink, C. W., & Wadsö, I. (1975). Methods of Biochemical Analysis, 23, 153.

    Google Scholar 

  29. Sattler, W., Esterbauer, H., Glatter, O., & Steiner, W. (1989). Biotechnology and Bioengineering, 33, 1221–1234.

    Article  CAS  Google Scholar 

  30. Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Applied Biochemistry and Biotechnology, 156, 557–562.

    Article  CAS  Google Scholar 

  31. Beezer, A. E., Steenson, T. I., & Tyrrell, H. J. V. (1974). Talanta, 21, 467–474.

    Article  CAS  Google Scholar 

  32. Jeoh, T., Baker, J. O., Ali, M. K., Himmel, M. E., & Adney, W. S. (2005). Analytical Biochemistry, 347, 244–253.

    Article  CAS  Google Scholar 

  33. Todd, M. J., & Gomez, J. (2001). Analytical Biochemistry, 296, 179–187.

    Article  CAS  Google Scholar 

  34. Lonhienne, T. G. A., & Winzor, D. J. (2004). Journal of Molecular Recognition, 17, 351–361.

    Article  CAS  Google Scholar 

  35. Olsen, S. N. (2006). Thermochimica Acta, 448, 12–18.

    Article  CAS  Google Scholar 

  36. Lonhienne, T., Baise, E., Feller, G., Bouriotis, V., & Gerday, C. (2001). Biochimica et Biophysica Acta, 1545, 349–356.

    Article  CAS  Google Scholar 

  37. Beran, M. P., & Paulicek, V. (1992). Journal of Thermal Analysis, 38, 1979–1988.

    Article  CAS  Google Scholar 

  38. Tewari, Y. B., Lang, B. E., Decker, S. R., & Goldberg, R. N. (2008). The Journal of Chemical Thermodynamics, 40, 1517–1526.

    Article  CAS  Google Scholar 

  39. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  40. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Agency for Science, Technology and Innovation (grant # 2104-07-0028 to PW) and the Carlsberg Foundation. A special thanks to Leigh Murphy for productive comments on the manuscript and help with control experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Westh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, S.N., Lumby, E., McFarland, K. et al. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry. Appl Biochem Biotechnol 163, 626–635 (2011). https://doi.org/10.1007/s12010-010-9068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9068-z

Keywords

Navigation