Skip to main content
Log in

Trichoderma harzianum IOC-4038: A Promising Strain for the Production of a Cellulolytic Complex with Significant β-Glucosidase Activity from Sugarcane Bagasse Cellulignin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse is an agroindustrial residue generated in large amounts in Brazil. This biomass can be used for the production of cellulases, aiming at their use in second-generation processes for bioethanol production. Therefore, this work reports the ability of a fungal strain, Trichoderma harzianum IOC-4038, to produce cellulases on a novel material, xylan free and cellulose rich, generated from sugarcane bagasse, named partially delignified cellulignin. The extract produced by T. harzianum under submerged conditions reached 745, 97, and 559 U L−1 of β-glucosidase, FPase, and endoglucanase activities, respectively. The partial characterization of this enzyme complex indicated, using a dual analysis, that the optimal pH values for the biocatalysis ranged from 4.9 to 5.2 and optimal temperatures were between 47 and 54 °C, depending on the activity studied. Thermal stability analyses revealed no significant decrease in activity at 37 °C during 23 h of incubation. When compared to model strains, Aspergillus niger ATCC-16404 and Trichoderma reesei RutC30, T. harzianum fermentation was faster and its extract showed a better balanced enzyme complex, with adequate characteristics for its application in simultaneous saccharification and fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pessoa, A., Jr., Roberto, I. C., Menossi, M., Santos, R. R., Ortega Filho, S., & Penna, T. C. V. (2005). Applied Biochemistry and Biotechnology, 121–124, 59–70.

    Article  Google Scholar 

  2. FAOSTAT 2009. Available from: http://faostat.fao.org. Accessed November 2, 2009.

  3. FIESP/CIESP 2001. Available from: www.fiesp.com.br/publicacoes/pdf/ambiente/relatorio_dma.pdf. Accessed November 2, 2009.

  4. Wilson, D. B., & Irwin, D. C. (1999). Advances in Biochemical Engineering/Biotechnology, 65, 1–21.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  6. Juhász, T., Egyházi, A., & Réczey, K. (2005). Applied Biochemistry and Biotechnology, 121–124, 243–254.

    Article  Google Scholar 

  7. Tsao, G. T., Xia, L., Cao, N., & Gong, C. S. (2000). Applied Biochemistry and Biotechnology, 84–86, 743–749.

    Article  Google Scholar 

  8. García-Kirchner, O., Segura-Granados, M., & Rodríguez-Pascual, P. (2005). Applied Biochemistry and Biotechnology, 121–124, 347–359.

    Article  Google Scholar 

  9. Wen, Z., Liao, W., & Chen, S. (2005). Applied Biochemistry and Biotechnology, 121–124, 93–104.

    Article  Google Scholar 

  10. Massadeh, M. I., Yusoff, W. M. W., Omar, O., & Kader, J. (2001). Biotechnological Letters, 23, 1771–1774.

    Article  CAS  Google Scholar 

  11. Castro, A. M. (2006). MSc dissertation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

  12. Castro, A. M., Carvalho, M. L. A., Leite, S. G. F., & Pereira, N., Jr. (2010). Journal of Industrial Microbiology & Biotechnology, 37, 151–158.

    Article  CAS  Google Scholar 

  13. Szijartó, N., Szengyel, Z., Lidén, G., & Réczey, K. (2004). Applied Biochemistry and Biotechnology, 113–116, 115–124.

    Article  Google Scholar 

  14. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  15. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  16. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  17. Charney, J., & Tomarelli, R. M. (1947). The Journal of Biological Chemistry, 171, 501–505.

    CAS  Google Scholar 

  18. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Ahmed, S., Aalam, N., Latif, F., Rajoka, M. I., & Jamil, A. (2005). Frontiers in Natural Product Chemistry, 1, 73–75.

    Article  Google Scholar 

  20. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  21. Vazquez, M. P., Silva, J. N., Souza, M. B., Jr., & Pereira, N., Jr. (2007). Applied Biochemistry and Biotechnology, 136–140, 141–153.

    Article  Google Scholar 

  22. Ferreira, V., Faber, M. O., Mesquita, S. S., & Pereira, N., Jr. (2010). Electronic Journal of Biotechnology, 13, 1–7.

    Article  Google Scholar 

  23. Iwashita, K., Shimoi, H., & Ito, K. (2001). Journal of Bioscience and Bioengineering, 91, 134–140.

    Article  CAS  Google Scholar 

  24. Lima, A. L. G., Nascimento, R. P., Bon, E. P. S., & Coelho, R. R. R. (2005). Enzyme and Microbial Technology, 37, 272–277.

    Article  Google Scholar 

  25. Akiba, S., Kimura, Y., Yamamoto, K., & Kumagai, H. (1995). Journal of Fermentation and Bioengineering, 79, 125–130.

    Article  CAS  Google Scholar 

  26. Vries, R. P., & Visser, J. (2001). Microbiology and Molecular Biology Reviews, 65, 497–522.

    Article  Google Scholar 

  27. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., et al. (2005). Enzyme and Microbial Technology, 37, 175–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Daniele F. Carvalho and Marcelle L. A. Carvalho for their technical support. The authors also thank PETROBRAS, the Brazilian Council for Research (CNPq), and the Rio de Janeiro State Foundation for Science and Technology (FAPERJ) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nei Pereira Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Castro, A.M., Pedro, K.C.N.R., da Cruz, J.C. et al. Trichoderma harzianum IOC-4038: A Promising Strain for the Production of a Cellulolytic Complex with Significant β-Glucosidase Activity from Sugarcane Bagasse Cellulignin. Appl Biochem Biotechnol 162, 2111–2122 (2010). https://doi.org/10.1007/s12010-010-8986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8986-0

Keywords

Navigation