Skip to main content
Log in

Biosynthesis of Indigo Dye by Newly Isolated Naphthalene-Degrading Strain Pseudomonas sp. HOB1 and its Application in Dyeing Cotton Fabric

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Indigo is one of the oldest dyes manufactured chemically and is mostly used in textile, food, and pharmaceutical industries. However, owing to the environmental hazards posed by the chemical production, the present scenario in the field stipulates a biosynthesis alternative for indigo production. The present study describes an indigenously isolated naphthalene-degrading strain Pseudomonas sp. HOB1 producing a blue pigment when indole was added in the growth medium. This blue pigment was analyzed by high-pressure thin-layer chromatography and other spectroscopic techniques which revealed it to be the indigo dye. Pseudomonas sp. HOB1 showed ability to produce 246 mg indigo liter−1 of the medium. The K m for the enzyme naphthalene dioxygenase which is involved in indigo formation is 0.3 mM, and V max was as high as 50 nmol min−1 mg dry biomass−1. The bacterial indigo dye was further successfully applied for dyeing cotton fabrics. The high indigo productivity of Pseudomonas sp. HOB1 using naphthalene as growth substrate and its applicability on cotton fabrics, therefore, stems the probability of using this culture for commercial indigo production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doukyu, N., Toyoda, K., & Aono, R. (2003). Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water organic solvent two-phase system. Applied Microbiology and Biotechnology, 60, 720–725.

    CAS  Google Scholar 

  2. Travasso, G., Santos, S., Oliveira-Campos, A., Raposo, M., & Prasitpan, N. (2003). Indigo revisited. Advances in Colour Science & Technology, 6, 95–99.

    CAS  Google Scholar 

  3. Nicholson, S., & John, P. (2005). The mechanism of bacterial indigo reduction. Applied Microbiology and Biotechnology, 68, 117–123. doi:10.1007/s00253-004-1839-4.

    Article  CAS  Google Scholar 

  4. Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J., Snyder, G., et al. (2001). Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? The Journal of Biological Chemistry, 276, 251–260. doi:10.1074/jbc.M002466200.

    Article  CAS  Google Scholar 

  5. Hoessel, R., Leclerc, S., Endicott, J., Nobel, M., Lawrie, A., Tunnah, P., et al. (1999). Indirubin, the active constituent of a Chinese antileukamia medicine, inhibits cyclin-dependent kinases. Nature Cell Biology, 1, 60–67. doi:10.1038/9035.

    Article  CAS  Google Scholar 

  6. Kapadia, J., Tokuda, H., Sridhar, R., Balasubramanian, V., Takayasu, J., Bu, P., et al. (1998). Cancer chemo preventive activity of synthetic colorants used in foods, pharmaceuticals and cosmetic preparations. Cancer Letters, 129, 87–95. doi:10.1016/S0304-3835(98)00087-1.

    Article  CAS  Google Scholar 

  7. Xiao, Z., Hao, Y., Liu, B., & Qian, L. (2002). Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leukemia & Lymphoma, 43, 1763–1768. doi:10.1080/1042819021000006295.

    Article  CAS  Google Scholar 

  8. Kunikata, T., Tatefuji, T., Aga, H., Iwaki, K., Ikeda, M., & Kurimoto, M. (2000). Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. European Journal of Pharmacology, 410, 93–100. doi:10.1016/S0014-2999(00)00879-7.

    Article  CAS  Google Scholar 

  9. Han, X. H., Wang, W., & Xiao, X. G. (2008). Microbial biosynthesis and biotransformation of indigo and indigo-like pigments. Chinese Journal of Biotechnology, 24, 921–926. doi:10.1016/S1872-2075(08)60043-6.

    Article  CAS  Google Scholar 

  10. Ensley, B., Ratzkin, B., & Osslund, T. (1983). Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 222, 167–169. doi:10.1126/science.6353574.

    Article  CAS  Google Scholar 

  11. Murdock, D., Ensley, B., Serdar, C., & Thalen, M. (1993). Construction of metabolic operons catalyzing the de novo biosoynthesis of indigo in Escherichia coli. Bio/Technology, 11, 381–386. doi:10.1038/nbt0393-381.

    Article  CAS  Google Scholar 

  12. Wackett, P. (2002). Mechnism and applications of Rieske non-heme iron dioxygenases. Enzyme and Microbial Technology, 31, 577–587. doi:10.1016/S0141-0229(02)00129-1.

    Article  CAS  Google Scholar 

  13. Parales, R., Lee, K., Resnick, S., Jiang, H., Lessner, D., & Gibson, D. (2000). Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. Journal of Bacteriology, 182, 1641–1649. doi:10.1128/JB.182.6.1641-1649.2000.

    Article  CAS  Google Scholar 

  14. Kim, J., Lee, K., Kim, Y., Kim, C., & Lee, K. (2003). Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase. Letters in Applied Microbiology, 36, 343–348. doi:10.1046/j.1472-765X.2003.01279.x.

    Article  CAS  Google Scholar 

  15. Pathak, H., Kantharia, D., Malpani, A., & Madamwar, D. (2009). Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.12.074.

    Google Scholar 

  16. O'Connor, K., & Hartmans, S. (1998). Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnology Letters, 3, 219–223. doi:10.1023/A:1005361415496.

    Article  Google Scholar 

  17. Drewlo, S., Christian, B., Mohamed, M., Frank, M., & Alexander, S. (2001). Cloning and Expression of a Ralstonia eutropha HF39 Gene Mediating Indigo Formation in Escherichia coli. Applied and Environmental Microbiology, 67, 1964–1969. doi:10.1128/AEM.67.4.1964-1969.2001.

    Article  CAS  Google Scholar 

  18. Nizar, M., Kechida, M., & M'henni, M. (2008). New process of dyeing cotton textile by indigo with borohydride: effect of the concentration of the reducing agent. International Journal of Applied Chemistry, 4, 1–14.

    Google Scholar 

  19. Bhushan, B., Shamanta, S., & Jain, R. (2000). Indigo production by naphthalene degrading bacteria. Letters in Applied Microbiology, 31, 5–9. doi:10.1046/j.1472-765x.2000.00754.x.

    Article  CAS  Google Scholar 

  20. O'Connor, K., Alan, D., & Hartmans, S. (1997). Indigo formation by microorganisms expressing styrene monooxygenase activity. Applied and Environmental Microbiology, 63(11), 4287–4291.

    Google Scholar 

  21. Yun, L., & Lehe, M. (2007). Production of indigo by immobilization of E.coli BL21 (DE3) cells in calcium-alginate gel capsules. Chinese Journal of Chemical Engineering, 15(3), 387–390. doi:10.1016/S1004-9541(07)60096-2.

    Article  Google Scholar 

  22. Han, G., Shin, H., & Kim, S. (2008). Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzyme and Microbial Technology, 42(7), 617–623. doi:10.1016/j.enzmictec.2008.02.004.

    Article  CAS  Google Scholar 

  23. Choi, H., Kim, J., Cho, E., Kim, Y., Kim, J., & Kim, S. (2003). A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochemical and Biophysical Research Communications, 304(4), 930–936. doi:10.1016/S0006-291X(03)01087-8.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Department of Science and Technology, New Delhi, India for providing the financial support and the project collaborators at Gujarat Ecology Society, Baroda. The authors are also thankful to Dr. Ray, P.G. Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat for his kind help during FT-IR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datta Madamwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, H., Madamwar, D. Biosynthesis of Indigo Dye by Newly Isolated Naphthalene-Degrading Strain Pseudomonas sp. HOB1 and its Application in Dyeing Cotton Fabric. Appl Biochem Biotechnol 160, 1616–1626 (2010). https://doi.org/10.1007/s12010-009-8638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8638-4

Keywords

Navigation