Skip to main content
Log in

Optimization of Lipase-Catalyzed Transesterification of Lard for Biodiesel Production Using Response Surface Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel, an alternative diesel fuel made from renewable biological resources, has become more and more attractive recently. Combined use of two immobilized lipases with complementary position specificity instead of one lipase is a potential way to significantly reduce cost of lipase-catalyzed biodiesel production. In this study, the process of biodiesel production from lard catalyzed by the combined use of Novozym435 (non-specific) and Lipozyme TLIM (1,3-specific) was optimized by response surface methodology. The optimal reaction conditions were 0.04 of amount of lipase/oil (w/w), 0.49 of proportion of Novozym435/total lipases (w/w), 0.55 of quantity of tert-butanol/oil (v/v), 5.12 of quantity of methanol/oil (mol/mol), and 20 h of reaction time, by which 97.2% of methyl ester (ME) yield was attained, very close to the predicted value (97.6%). This optimal reaction condition could be true of other similar reactions with plant and animal oil resources; their ME yield could be higher than 95%. The lipases regenerated by washing with organic solvent after each reaction cycle could be continuously reused for 20 cycles without any loss of activity, exhibiting very high manipulation stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukuda, H., Kondo, A., & Noda, H. (2001). Journal of Bioscience and Bioengineering, 92, 405–416. doi:10.1263/jbb.92.405.

    Article  CAS  Google Scholar 

  2. De Oliveira, D., Di Luccio, M., Faccio, C., et al. (2004). Applied Biochemistry and Biotechnology, 115, 771–780. doi:10.1385/ABAB:115:1-3:0771.

    Article  Google Scholar 

  3. Shimada, Y., Watanabe, Y., Sugihara, A., & Tominga, Y. (2002). Journal of Molecular Catalysis, B, Enzymatic, 17, 133–142. doi:10.1016/S1381-1177(02)00020-6.

    Article  CAS  Google Scholar 

  4. Sanchez, F., & Vasudevan, P. T. (2006). Applied Biochemistry and Biotechnology, 135, 1–13. doi:10.1385/ABAB:135:1:1.

    Article  CAS  Google Scholar 

  5. Hernández-Martín, E., & Otero, C. (2008). Bioresource Technology, 99, 277–286. doi:10.1016/j.biortech.2006.12.024.

    Article  Google Scholar 

  6. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Bioresource Technology, 98, 648–653. doi:10.1016/j.biortech.2006.02.021.

    Article  CAS  Google Scholar 

  7. Du, W., Xu, Y. Y., Liu, D. H., & Zeng, J. (2004). Journal of Molecular Catalysis, B, Enzymatic, 30, 125–129. doi:10.1016/j.molcatb.2004.04.004.

    Article  CAS  Google Scholar 

  8. Shieh, C. -J., Liao, H. -F., & Lee, C. -C. (2003). Bioresource Technology, 88, 103–106. doi:10.1016/S0960-8524(02)00292-4.

    Article  CAS  Google Scholar 

  9. Noureddini, H., Gao, X., & Philkana, R. S. (2005). Bioresource Technology, 96, 769–777. doi:10.1016/j.biortech.2004.05.029.

    Article  CAS  Google Scholar 

  10. Negishi, S., Arai, Y., Arimoto, S., et al. (2003). Journal of the American Oil Chemists’ Society, 80, 971–974. doi:10.1007/s11746-003-0805-y.

    Article  CAS  Google Scholar 

  11. Li, L. L., Du, W., Liu, D. H., et al. (2006). Journal of Molecular Catalysis, B, Enzymatic, 43, 58–62. doi:10.1016/j.molcatb.2006.06.012.

    Article  CAS  Google Scholar 

  12. Ibrahim, N. A., Guo, Z., & Xu, X. (2008). Journal of the American Oil Chemists’ Society, 85, 37–45. doi:10.1007/s11746-007-1157-y.

    Article  CAS  Google Scholar 

  13. Haaland, P. D. (1989). Experimental design in biotechnology pp. 1–18. New York: Marcel Dekker.

    Google Scholar 

  14. Li, W., Du, W., & Liu, D. H. (2007). Journal of Molecular Catalysis, B, Enzymatic, 45, 122–127. doi:10.1016/j.molcatb.2007.01.002.

    Article  CAS  Google Scholar 

  15. Huang, Y., Zheng, H., & Yan, Y. J. (2007). Journal of Beijing University of Chemical Technology (Natural Science Edition), 34, 549–552.

    Google Scholar 

  16. Huang, Y., & Yan, Y. J. (2008). Zeitschrift fur Naturforschung (C), 63, 297–302.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by Chinese National 863 Project (Project No. 2006AA020203 & No. 2007AA05Z417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Zheng, H. & Yan, Y. Optimization of Lipase-Catalyzed Transesterification of Lard for Biodiesel Production Using Response Surface Methodology. Appl Biochem Biotechnol 160, 504–515 (2010). https://doi.org/10.1007/s12010-008-8377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8377-y

Keywords

Navigation