Skip to main content
Log in

On the tool vibration effects during down-cut peripheral milling process

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Improvement in machining efficiency requires better comprehension of multiphysical cutting process phenomenon under real dynamic cutting conditions. Present work suggests a multi-scale interaction of mesoscopic level cutting with macroscopic level machine tool dynamics to optimize cutting process parameters and potentially improve interactive design process. For that, the case of an orthogonal down-cut peripheral milling, for an aeronautic aluminium alloy A2024-T351, has been treated. A finite element based multi-scale dynamic cutting model has been conceived with a commercial finite element based code ABAQUS®/EXPLICIT to predict the chip morphology under dynamic cutting conditions. Later, combines the elasticity of a classical high speed milling spindle system (tool, tool-holder and rotor) with the mesoscopic level chip formation process. A qualitative parametric study with various stiffness and damping coefficient values for high speed milling spindle system shows that, a less rigid un-damped milling system generates higher amplitude tool vibrations during cutting. In this situation, the temperature rises at tool-workpiece interface, enhancing material softening. Present study deals with the consequences of this softening on affecting the chip morphology (evolution of segmented chip morphology), and machined surface integrity. Further, numerical simulation results depict that the higher values of cutting speed and uncut chip thickness are associated with higher values of milling cutter vibration amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Initial yield stress (MPa)

a p :

Cutting depth (mm)

B :

Hardening modulus (MPa)

C :

Strain rate dependency coefficient

c eq :

Equivalent linear damping of machining system (kg s−1)

c eqr :

Equivalent rotational damping of machining system (kg m2s−1rad−1)

C p :

Specific heat (J kg−1 °C−1)

D :

Overall damage variable

D1. . .D5:

Coefficients of Johnson-Cook material shear failure initiation criterion

D T :

Tool diameter (mm)

E :

Young’s modulus (MPa)

f :

Feed rate (mm/rev)

G f :

Fracture energy (N/m)

h :

Uncut chip thickness (mm)

I z :

Moment of inertia of the assembly (tool, tool-holder and rotor) (kg m2)

k eq :

Equivalent linear stiffness of machining system (N/m)

k eqr :

Equivalent rotational stiffness of machining system (Nm/rad)

L :

Characteristic length (square root of the integration point element area (mm))

m :

Thermal softening coefficient

m eq :

Equivalent moving mass (kg)

n :

Work-hardening exponent

N :

Spindle rotation frequency (rev/min)

p :

Hydrostatic pressure (MPa)

Px (i) :

x coordinate of the ith tooth of the milling tool (i = 1, 2. . . z t )

Py (i) :

y coordinate of the ith tooth of the milling tool (i = 1, 2. . . z t )

R n :

Tool hone edge radius (μm)

T :

Temperature at a given calculation instant (°C)

T m :

Melting temperature (°C)

T n :

Nodal temperature (°C)

T r :

Room temperature (°C)

\({\bar{{u}}}\) :

Equivalent plastic displacement (mm)

\({\bar{{u}}_f }\) :

Equivalent plastic displacement at failure (mm)

Δu :

Relative displacement of spring element (mm)

V f :

Tool feed velocity (mm/min)

V C :

Cutting speed (m/min)

z t :

Total number of tool teeth

\({\bar{{\varepsilon}}}\) :

Equivalent plastic strain

\({\dot{\bar{{\varepsilon}}}}\) :

Plastic strain rate (s−1)

\({\dot{\bar{{\varepsilon}}}_0 }\) :

Reference strain rate (10−3s−1)

\({\bar{{\varepsilon }}_f }\) :

Equivalent plastic strain at failure

\({\Delta \bar{{\varepsilon}}}\) :

Increment of equivalent plastic strain

\({\bar{{\varepsilon}}_{0i}}\) :

Plastic strain at damage initiation

\({\bar{{\sigma}}}\) :

von-Mises plastic equivalent stress (MPa)

σ n :

Normal stress (MPa)

\({p{/}{\bar{{\sigma}}}}\) :

Stress triaxiality

τ f :

Friction shear stress (MPa)

τ y :

Shear stress (MPa)

ω :

Damage initiation criterion

ν :

Poisson’s ratio

α d :

Expansion coefficient (μ mm−1° C−1)

α o :

Flank/ clearance angle (°)

γ o :

Rake/cutting angle (°)

λ :

Thermal conductivity (Wm−1 C−1)

ρ :

Density (kg/m3)

ζ eq :

Equivalent damping ratio of machining system

θ :

Rotational vibration displacement (°)

ω r :

Angular velocity (rad/s)

μ :

Friction coefficient

dof:

Degree of freedom

MDC-model:

Multiscale dynamic cutting model

OP:

Orthogonal plane

Path i :

Curve traced by TT, i = 1 . . . 5

Plot i:

Curve representing the cutting force (i = 1 . . . 5)

Profile i :

Curve representing the cut surface topology (i = 1. . . 5)

rpm:

Revolution per minute

SSC-model:

Steady state cutting model corresponding to a perfectly rigid spindle system

TT:

Tool tip

References

  1. Rashid A., Mihai Nicolescu C.: Design and implementation of tuned viscoelastic dampers for vibration control in milling. Int. J. Mach. Tools Manuf. 48, 1036–1053 (2008)

    Article  Google Scholar 

  2. Tatar K., Gren P.: Measurement of milling tool vibrations during cutting using laser vibrometry. Int. J. Mach. Tools Manuf. 48, 380–387 (2008)

    Article  Google Scholar 

  3. Mabrouki T., Girardin F., Asad M., Rigal J.-F.: Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351). Int. J. Mach. Tools Manuf. 48, 1187–1197 (2008)

    Article  Google Scholar 

  4. Fischer X., Coutellier D.: Research in interactive design, vol. 2, Springer, France (2006)

    Google Scholar 

  5. Dulong J.L., Druesne F., Villon P.: A model reduction approach for real-time part deformation with nonlinear mechanical behaviour. Int. J. Interact. Des. Manuf. 1, 229–238 (2007)

    Article  Google Scholar 

  6. Chryssolouris G.: Effects of machine-tool-workpiece stiffness on wear behaviour of superhard cutting materials. Ann. CIRP 31(1), 65–69 (1982)

    Article  Google Scholar 

  7. Lalanne M., Ferraris G.: Rotordynamics Prediction in Engineering, 2nd edn. Wiley, England (1997)

    Google Scholar 

  8. Rivin E.I., Kang H.L.: Enhancement of dynamic stability of cantilever tooling structures. Int. J. Mach. Tools Manuf. 32(4), 539–562 (1992)

    Article  Google Scholar 

  9. Gagnol V., Bouzgarrou B.C., Ray P., Barra C.: Model-based chatter stability prediction for high-speed spindles. Int. J. Mach. Tools Manuf. 47, 1176–1186 (2007)

    Article  Google Scholar 

  10. Johnson G.R., Cook W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  11. Hillerbourg A., Modeer M., Peterson P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  12. Teng X., Wierzbicki T.: Evaluation of six fracture models in high velocity perforation. Eng. Fract. Mech. 73(12), 1653–1678 (2006)

    Article  Google Scholar 

  13. http://www.knovel.com (Accessed 05 June 2008)

  14. Zorev, N.N.: Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. Proceedings of the International Research in Production Engineering Conference ASME, New York, pp. 42–49 (1963)

  15. Ni W., Cheng Y.-T., Weiner A.-M., Perry T.-A.: Tribological behaviour of diamond-like-carbon (DLC) coatings against aluminium alloys at elevated temperatures. Surf. Coatings Technol. 201(6), 3229–3234 (2006)

    Article  Google Scholar 

  16. Liu K., Melkote S.N.: Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int. J. Mech. Sci. 49(5), 650–660 (2007)

    Article  Google Scholar 

  17. Fang N., Wu Q.: The effects of chamfered and honed tool edge geometry in machining of three aluminium alloys. Int. J. Mach. Tools Manuf. 45(10), 1178–1187 (2005)

    Article  Google Scholar 

  18. Zaghbani I., Songmene V.: A force-temperature model including a constitutive law for dry high speed milling of aluminium alloys. J. Mater. Process. Technol. 209(5), 2532–2544 (2009)

    Article  Google Scholar 

  19. Kegg, R. L.: Cutting dynamics in machine tool chatter. Trans. ASME J. Eng. Ind. 464–470 (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mabrouki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asad, M., Mabrouki, T. & Rigal, J.F. On the tool vibration effects during down-cut peripheral milling process. Int J Interact Des Manuf 4, 215–225 (2010). https://doi.org/10.1007/s12008-010-0102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-010-0102-8

Keywords

Navigation