Skip to main content
Log in

Investigation of EMI and UV–IR shielding properties of wool and cotton/elastane nanocomposite fabrics

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, the electromagnetic interference (EMI) and ultraviolet–infrared (UV–IR) shielding behavior of wool (WO) and cotton/elastane (CO/EL) nanocomposite fabrics have been investigated. The study aims to investigate the EMI and UV–IR shielding performance of the CO/EL and wool-based fabrics coated with carbon (C), graphite (Gr), and indium (In) nanocomposite layers. To produce nanocomposite fabric samples, these three materials were used in different compositions and the coating processes were carried out by electron cyclotron resonance (ECR) and thermal evaporation methods. Subsequently, the EMI and UV–IR measurements were performed for the coated fabric samples, and the results have been analyzed. In this study, it has been proven for the first time that the ECR coating method can be used for coating fabrics as a textile material. Finally, it is found that the C+Gr(grid filled)+In wool sample and the carbon-coated CO/EL sample have widely exhibited a significant positive effect on increasing the EMI shielding performance in the range of 18–43 and 12–18 GHz frequencies, respectively. In addition, the results show that the C+Gr(grid)+C-coated CO/EL fabric has significant potential to increase the UV–IR shielding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kong, D, Li, J, Guo, A, Xiao, X, “High Temperature Electromagnetic Shielding Shape Memory Polymer Composite.” Chem. Eng. J., 408 127365. https://doi.org/10.1016/j.cej.2020.127365 (2021)

    Article  CAS  Google Scholar 

  2. Dong, K, Peng, X, Cheng, R, Wang, ZL, “Smart Textile Triboelectric Nanogenerators: Prospective Strategies for Improving Electricity Output Performance.” Nanoenergy Adv., 2 (1) 133–164. https://doi.org/10.3390/nanoenergyadv2010006 (2022)

    Article  Google Scholar 

  3. Saberi Motlagh, M, Mottaghitalab, V, Rismanchi, A, Rafieepoor Chirani, M, Hasanzadeh, M, “Performance Modelling of Textile Solar Cell Developed by Carbon Fabric/Polypyrrole Flexible Counter Electrode.” Int. J. Sustain. Energyhttps://doi.org/10.1080/14786451.2022.2026356 (2022)

    Article  Google Scholar 

  4. He, Z, Zhou, G, Oh, Y, Jung, BM, Um, MK, Lee, SK, Son, JI, Byun, JH, Chou, TW, “Ultrafast, Highly Sensitive, Flexible Textile-Based Humidity Sensors Made of Nanocomposite Filaments.” Mater. Today Nano, 18 100214. https://doi.org/10.1016/j.mtnano.2022.100214 (2022)

    Article  CAS  Google Scholar 

  5. Purbayanto, MAK, Jakubczak, M, Bury, D, Nair, VG, Birowska, M, Moszczyńska, D, Jastrzębska, A, “Tunable Antibacterial Activity of a Polypropylene Fabric Coated with Bristling Ti3C2Tx MXene Flakes Coupling the Nanoblade Effect with ROS Generation.” ACS Appl. Nano Mater., 5 (4) 5373–5386. https://doi.org/10.1021/acsanm.2c00365 (2022)

    Article  CAS  Google Scholar 

  6. Pasha, A, Khasim, S, Darwish, AAA, Hamdalla, TA, Al-Ghamdi, SA, Alfadhli, S, “Flexible, Stretchable and Electrically Conductive PDMS Decorated with Polypyrrole/Manganese-Iron Oxide Nanocomposite as a Multifunctional Material for High Performance EMI Shielding Applications.” Synth. Met., 283 116984. https://doi.org/10.1016/j.synthmet.2021.116984 (2022)

    Article  CAS  Google Scholar 

  7. Shah, MA, Pirzada, BM, Price, G, Shibiru, AL, Qurashi, A, “Applications of Nanotechnology in Smart Textile Industry: A Critical Review.” J. Adv. Res. https://doi.org/10.1016/j.jare.2022.01.008 (2022)

    Article  Google Scholar 

  8. Jiang, D, Murugadoss, V, Wang, Y, Lin, J, Ding, T, Wang, Z, Shao, Q, Wang, C, Liu, H, Lu, N, Wei, R, Subramania, A, Guo, Z, “Electromagnetic Interference Shielding Polymers and Nanocomposites-A Review.” Polym. Rev., 59 (2) 280–337. https://doi.org/10.1080/15583724.2018.1546737 (2019)

    Article  CAS  Google Scholar 

  9. Kumar, R, Sahoo, S, Joanni, E, Singh, RK, Tan, WK, Kar, KK, Matsuda, A, “Recent Progress on Carbon-Based Composite Materials for Microwave Electromagnetic Interference Shielding.” Carbon, 177 304–331. https://doi.org/10.1016/j.carbon.2021.02.091 (2021)

    Article  CAS  Google Scholar 

  10. Ghosh, S, Mondal, S, Ganguly, S, Remanan, S, Singha, N, Das, NC, “Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding.” Fibers Polym., 19 (5) 1064–1073. https://doi.org/10.1007/s12221-018-7995-4 (2018)

    Article  CAS  Google Scholar 

  11. Lan, C, Li, C, Hu, J, Yang, S, Qiu, Y, Ma, Y, “High-Loading Carbon Nanotube/Polymer Nanocomposite Fabric Coatings Obtained by Capillarity-Assisted ‘Excess Assembly’ for Electromagnetic Interference Shielding.” Adv. Mater. Interfaces, 5 (13) 1800116. https://doi.org/10.1002/admi.201800116 (2018)

    Article  CAS  Google Scholar 

  12. Sim, HJ, Lee, DW, Kim, H, Jang, Y, Spinks, GM, Gambhir, S, Officer, DL, Wallace, GG, Kim, SJ, “Self-Healing Graphene Oxide-Based Composite for Electromagnetic Interference Shielding.” Carbon, 155 499–505. https://doi.org/10.1016/j.carbon.2019.08.073 (2019)

    Article  CAS  Google Scholar 

  13. Gashti, MP, Hajiraissi, R, Gashti, MP, “Morphological, Optical and Electromagnetic Characterization of Polybutylene Terephthalate/Silica Nanocomposites.” Fibers Polym., 14 (8) 1324–1331. https://doi.org/10.1007/s12221-013-1324-8 (2013)

    Article  CAS  Google Scholar 

  14. Gashti, MP, Eslami, S, “A Robust Method for Producing Electromagnetic Shielding Cellulose via Iron Oxide Pillared Clay Coating Under Ultraviolet Irradiation.” Funct. Mater. Lett., 8 (06) 1550073. https://doi.org/10.1142/S1793604715500733 (2015)

    Article  CAS  Google Scholar 

  15. Jaiswal, V, Samant, M, Kadir, A, Chaturvedi, K, Nawale, AB, Mathe, VL, Dongre, PM, “UV Radiation Protection by Thermal Plasma Synthesized Zinc Oxide Nanosheets.” J. Inorg. Organomet. Polym. Mater., 27 (5) 1211–1219. https://doi.org/10.1007/s10904-017-0568-y (2017)

    Article  CAS  Google Scholar 

  16. Singh, MK, Singh, A, “Ultraviolet Protection by Fabric Engineering.” J. Text., 2013 579129. https://doi.org/10.1155/2013/579129 (2013)

    Article  Google Scholar 

  17. Shen, S, Yi, J, Cheng, R, Ma, L, Sheng, F, Li, H, Zhang, Y, Ning, C, Wang, H, Dong, K, Wang, ZL, “Electromagnetic Shielding Triboelectric Yarns for Human-Machine Interacting.” Adv. Electron. Mater., 8 (2) 2101130. https://doi.org/10.1002/aelm.202101130 (2022)

    Article  CAS  Google Scholar 

  18. Mavrić, Z, Tomšič, B, Simončič, B, “Recent Advances in the Ultraviolet Protection Finishing of Textiles.” Tekstilec, 61 (3) 201–220. https://doi.org/10.14502/tekstilec2018.61.201-220 (2018)

    Article  Google Scholar 

  19. Sayed, U, Tiwari, R, Dabhi, P, “UV Protection Finishes on Textile Fabrics.” Int. J. Adv. Sci. Eng., 1 (3) 56–63 (2015)

    Google Scholar 

  20. Shah, JN, Padhye, R, Pachauri, RD, “Studies on UV Protection and Antimicrobial Functionality of Textiles.” J. Nat. Fibershttps://doi.org/10.1080/15440478.2021.1932678 (2021)

    Article  Google Scholar 

  21. Sankaran, A, Kamboj, A, Samant, L, Jose, S, “Synthetic and Natural UV Protective Agents for Textile Finishing.” In: Innovative and Emerging Technologies for Textile Dyeing and Finishing, pp. 301–324. https://doi.org/10.1002/9781119710288.ch11 (2021)

  22. Rather, LJ, Haji, A, Shabbir, M (eds.) Innovative and Emerging Technologies for Textile Dyeing and Finishing, pp. 301–324. John Wiley & Sons Inc. https://doi.org/10.1002/9781119710288.ch11 (2021)

  23. Kumar, S, Kumar, P, Gupta, R, Verma, V, “Electromagnetic Interference Shielding Behaviours of In-Situ Polymerized Ferrite-Polyaniline Nano-Composites and Ferrite-Polyaniline Deposited Fabrics in X-Band Frequency Range.” J. Alloys Compd., 862 158331. https://doi.org/10.1016/j.jallcom.2020.158331 (2021)

    Article  CAS  Google Scholar 

  24. Saini, M, Shukla, R, Kumar, A, “Cd2+ Substituted Nickel Ferrite Doped Polyaniline Nanocomposites as Effective Shield Against Electromagnetic Radiation in X-Band Frequency.” J. Magn. Magn. Mater., 491 165549. https://doi.org/10.1016/j.jmmm.2019.165549 (2019)

    Article  CAS  Google Scholar 

  25. Ghosh, S, Ganguly, S, Das, P, Das, TK, Bose, M, Singha, NK, Das, AK, Das, NC, “Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application.” Fibers Polym., 20 (6) 1161–1171. https://doi.org/10.1007/s12221-019-1001-7 (2019)

    Article  CAS  Google Scholar 

  26. Kim, K, Huh, JY, Hong, YC, “Direct Coating of Copper Nanoparticles on Flexible Substrates from Copper Precursors Using Underwater Plasma and Their EMI Performance.” Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 265 114995. https://doi.org/10.1016/j.mseb.2020.114995 (2021)

    Article  CAS  Google Scholar 

  27. Esen, M, Ilhan, I, Karaaslan, M, Unal, E, Dincer, F, Sabah, C, “Electromagnetic Absorbance Properties of a Textile Material Coated Using Filtered Arc-Physical Vapor Deposition Method.” J. Ind. Text., 45 (2) 298–309. https://doi.org/10.1177/1528083714534710 (2015)

    Article  CAS  Google Scholar 

  28. Prakash, A, Narayanan, S, Thangavelu, K, Srivastava, AK, Pandey, MK, Nagarajan, R, Bhattacharyya, A, “Functional Properties of Zinc-Nanographite Based Nanocomposite Paints for 2–9 GHz Microwave Absorption.” J. Coat. Technol. Res., 18 (5) 1237–1243. https://doi.org/10.1007/s11998-021-00484-y (2021)

    Article  CAS  Google Scholar 

  29. Liu, S, Qin, S, Jiang, Y, Song, P, Wang, H, “Lightweight High-Performance Carbon-Polymer Nanocomposites for Electromagnetic Interference Shielding.” Compos. A Appl. Sci. Manuf., 145 106376. https://doi.org/10.1016/j.compositesa.2021.106376 (2021)

    Article  CAS  Google Scholar 

  30. Jiang, Y, Dong, K, An, J, Liang, F, Yi, J, Peng, X, Ning, C, Ye, C, Wang, ZL, “UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring.” ACS Appl. Mater. Interfaces, 13 (9) 11205–11214. https://doi.org/10.1021/acsami.0c22670 (2021)

    Article  CAS  Google Scholar 

  31. Dmitriev, AS, “Hybrid Graphene Nanocomposites: Thermal Interface Materials and Functional Energy Materials.” In: Ameen, S (ed.) Graphene Production and Application. IntechOpen, London. https://doi.org/10.5772/intechopen.83309 (2020)

    Chapter  Google Scholar 

  32. Kibria, G, Repon, M, Hossain, M, Islam, T, Jalil, MA, Aljabri, MD, Rahman, MM, “UV-Blocking Cotton Fabric Design for Comfortable Summer Wears: Factors, Durability and Nanomaterials.” Cellulosehttps://doi.org/10.1007/s10570-022-04710-7 (2022)

    Article  Google Scholar 

  33. Safdar, F, Ashraf, M, Javid, A, Iqbal, K, “Polymeric Textile-Based Electromagnetic Interference Shielding Materials, Their Synthesis, Mechanism and Applications–A Review.” J. Ind. Text. https://doi.org/10.1177/15280837211037085 (2021)

    Article  Google Scholar 

  34. Hong, YK, Lee, CY, Jeong, CK, Sim, JH, Kim, K, Joo, J, Kim, MS, Lee, JY, Jeong, SH, Byun, SW, “Electromagnetic Interference Shielding Characteristics of Fabric Complexes Coated with Conductive Polypyrrole and Thermally Evaporated Ag.” Curr. Appl. Phys., 1 (6) 439–442. https://doi.org/10.1016/S1567-1739(01)00054-2 (2001)

    Article  Google Scholar 

  35. Lee, CY, Lee, DE, Jeong, CK, Hong, YK, Shim, JH, Joo, J, Kim, MS, Lee, JY, Jeong, SH, Byun, SH, Zang, DS, Yang, HG, “Electromagnetic Interference Shielding by Using Conductive Polypyrrole and Metal Compound Coated on Fabrics.” Polym. Adv. Technol., 13 (8) 577–583. https://doi.org/10.1002/pat.227 (2002)

    Article  CAS  Google Scholar 

  36. Lai, K, Sun, RJ, Chen, MY, Wu, H, Zha, AX, “Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments.” Text. Res. J., 77 (4) 242–246. https://doi.org/10.1177/0040517507074033 (2007)

    Article  CAS  Google Scholar 

  37. Lacerda, SN, Gonçalves, LM, Carvalho, H, “Deposition of Conductive Materials on Textile and Polymeric Flexible Substrates.” J. Mater. Sci. Mater. Electron., 24 (2) 635–643. https://doi.org/10.1007/s10854-012-0781-y (2013)

    Article  CAS  Google Scholar 

  38. Esen, M, İlhan, İ, Karaaslan, M, Esen, R, “Investigation of Electromagnetic and Ultraviolet Properties of Nano-Metal-Coated Textile Surfaces.” Appl. Nanosci., 10 (2) 551–561. https://doi.org/10.1007/s13204-019-01122-1 (2020)

    Article  CAS  Google Scholar 

  39. Li, H, Lu, X, Yuan, D, Sun, J, Erden, F, Wang, F, He, C, “Lightweight Flexible Carbon Nanotube/Polyaniline Films with Outstanding EMI Shielding Properties.” J. Mater. Chem. C, 5 (34) 8694–8698. https://doi.org/10.1039/C7TC02394D (2017)

    Article  CAS  Google Scholar 

  40. Abbasi, H, Antunes, M, Velasco, JI, “Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding.” Prog. Mater. Sci., 103 319–373. https://doi.org/10.1016/j.pmatsci.2019.02.003 (2019)

    Article  CAS  Google Scholar 

  41. Wu, N, Hu, Q, Wei, R, Mai, X, Naik, N, Pan, D, Guo, Z, Shi, Z, “Review on the Electromagnetic Interference Shielding Properties of Carbon Based Materials and Their Novel Composites: Recent Progress, Challenges and Prospects.” Carbon, 176 88–105. https://doi.org/10.1016/j.carbon.2021.01.124 (2021)

    Article  CAS  Google Scholar 

  42. Aisyah, HA, Paridah, MT, Sapuan, SM, Ilyas, RA, Khalina, A, Nurazzi, NM, Lee, SH, Lee, CH, “A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites.” Polymers, 13 (3) 471. https://doi.org/10.3390/polym13030471 (2021)

    Article  CAS  Google Scholar 

  43. Li, W, Xu, C, Ren, X, Xue, Y, Zhao, J, Li, Q, Zhang, X, “Anti-Fatigue and Multifunctional Core-Spun Yarns Based on Carbon Nanotube Springs.” Compos. Commun., 19 127–133. https://doi.org/10.1016/j.coco.2020.03.008 (2020)

    Article  CAS  Google Scholar 

  44. Stempien, Z, Rybicki, T, Rybicki, E, Kozanecki, M, Szynkowska, MI, “In-Situ Deposition of Polyaniline and Polypyrrole Electroconductive Layers on Textile Surfaces by the Reactive Ink-Jet Printing Technique.” Synth. Met., 202 49–62. https://doi.org/10.1016/j.synthmet.2015.01.027 (2015)

    Article  CAS  Google Scholar 

  45. Tian, M, Du, M, Qu, L, Chen, S, Zhu, S, Han, G, “Electromagnetic Interference Shielding Cotton Fabrics with High Electrical Conductivity and Electrical Heating Behaviour via Layer-by-Layer Self-Assembly Route.” RSC Adv., 7 (68) 42641–42652. https://doi.org/10.1039/C7RA08224J (2017)

    Article  CAS  Google Scholar 

  46. Thennarasu, P, Prabunathan, P, Senthilkumar, M, “Development of Biomass-Derived Functionalized Activated Carbon-Coated and Polyaniline-Grafted Cotton Fabric with Enhanced Ultraviolet Resistance.” J. Ind. Text., 47 (7) 1609–1625. https://doi.org/10.1177/1528083717702008 (2018)

    Article  CAS  Google Scholar 

  47. Khattab, TA, Rehan, M, Hamdy, Y, Shaheen, TI, “Facile Development of Photoluminescent Textile Fabric via Spray Coating of Eu (II)-Doped Strontium Aluminate.” Ind. Eng. Chem. Res., 57 (34) 11483–11492. https://doi.org/10.1021/acs.iecr.8b01594 (2018)

    Article  CAS  Google Scholar 

  48. Stevens, JE, “Electron Cyclotron Resonance Plasma Sources.” In: Popov, OA (ed.) High Density Plasma Sources, pp. 312–379. William Andrew Inc., Norwich (1995)

    Chapter  Google Scholar 

  49. Özkan, İ, Duru Baykal, P, Karaaslan, M, “Investigation of Electromagnetic Shielding Properties of Metal Composite Tufted Carpets.” J. Text. Inst., 111 (4) 476–483. https://doi.org/10.1080/00405000.2019.1643213 (2020)

    Article  CAS  Google Scholar 

  50. Ebrahimi, I, Gashti, MP, “Chemically Reduced Versus Photo-Reduced Clay-Ag-Polypyrrole Ternary Nanocomposites: Comparing Thermal, Optical, Electrical and Electromagnetic Shielding Properties.” Mater. Res. Bull., 83 96–107. https://doi.org/10.1016/j.materresbull.2016.05.024 (2016)

    Article  CAS  Google Scholar 

  51. Ebrahimi, I, Gashti, MP, “Polypyrrole-MWCNT-Ag Composites for Electromagnetic Shielding: Comparison Between Chemical Deposition and UV-Reduction Approaches.” J. Phys. Chem. Solids, 118 80–87. https://doi.org/10.1016/j.jpcs.2018.03.008 (2018)

    Article  CAS  Google Scholar 

  52. Zhang, Y, Gao, Q, Zhang, S, Fan, X, Qin, J, Shi, X, Zhang, G, “rGO/MXene Sandwich-Structured Film at Spunlace Non-Woven Fabric Substrate: Application to EMI Shielding and Electrical Heating.” J. Colloid Interface Sci., 614 194–204. https://doi.org/10.1016/j.jcis.2022.01.030 (2022)

    Article  CAS  Google Scholar 

  53. Xie, C, Wang, Y, Wang, W, Yu, D, “Flexible, Conductive and Multifunctional Cotton Fabric with Surface Wrinkled MXene/CNTs Microstructure for Electromagnetic Interference Shielding.” Colloids Surf. A, 651 129713. https://doi.org/10.1016/j.colsurfa.2022.129713 (2022)

    Article  CAS  Google Scholar 

  54. Özkan, İ, “Investigation on Antimicrobial Activity and Electromagnetic Shielding Effectiveness of Metal Composite Single Jersey Fabrics.” J. Eng. Fibers Fabr., 14 1558925019895984. https://doi.org/10.1177/1558925019895984 (2019)

    Article  Google Scholar 

  55. Wang, X, Lei, Z, Ma, X, He, G, Xu, T, Tan, J, Wang, L, Zhang, X, Qu, L, Zhang, X, “A Lightweight MXene-Coated Nonwoven Fabric with Excellent Flame Retardancy, EMI Shielding, and Electrothermal/Photothermal Conversion for Wearable Heater.” Chem. Eng. J., 430 132605. https://doi.org/10.1016/j.cej.2021.132605 (2022)

    Article  CAS  Google Scholar 

  56. Li, DY, Liu, LX, Wang, QW, Zhang, HB, Chen, W, Yin, G, Yu, ZZ, “Functional Polyaniline/MXene/Cotton Fabrics with Acid/Alkali-Responsive and Tunable Electromagnetic Interference Shielding Performances.” ACS Appl. Mater. Interfaces, 14 (10) 12703–12712. https://doi.org/10.1021/acsami.2c00797 (2022)

    Article  CAS  Google Scholar 

  57. Cheng, HC, Chen, CR, Hsu, SH, Cheng, KB, “Electromagnetic Shielding Effectiveness and Conductivity of PTFE/Ag/MWCNT Conductive Fabrics Using the Screen Printing Method.” Sustainability, 12 (15) 5899. https://doi.org/10.3390/su12155899 (2020)

    Article  CAS  Google Scholar 

  58. Kumar, GS, Vishnupriya, D, Joshi, A, Datar, S, Patro, TU, “Electromagnetic Interference Shielding in 1–18 GHz Frequency and Electrical Property Correlations in Poly (Vinylidene Fluoride)–Multi-Walled Carbon Nanotube Composites.” Phys. Chem. Chem. Phys., 17 (31) 20347–20360. https://doi.org/10.1039/C5CP02585K (2015)

    Article  CAS  Google Scholar 

  59. Zhao, W, Zheng, Y, Qian, J, Zhaofa, Z, Jin, Z, Qiu, H, Zhu, C, Hong, X, “AgNWs/MXene Derived Multifunctional Knitted Fabric Capable of High Electrothermal Conversion Efficiency, Large Strain and Temperature Sensing, and EMI Shielding.” J. Alloys Compd., 923 166471. https://doi.org/10.1016/j.jallcom.2022.166471 (2022)

    Article  CAS  Google Scholar 

  60. Huang, CH, Hsu, PW, Ke, ZW, Lin, JH, Shiu, BC, Lou, CW, Lin, JH, “A Study on Highly Effective Electromagnetic Wave Shield Textile Shell Fabrics Made of Point Polyester/Metallic Core-Spun Yarns.” Polymers, 14 (13) 2536. https://doi.org/10.3390/polym14132536 (2022)

    Article  CAS  Google Scholar 

  61. Siavashani, VS, Gursoy, NC, Montazer, M, Altay, P, “Stretchable Electromagnetic Interference Shielding Textile Using Conductive Polymers and Metal Nanoparticles.” Fibers Polym. https://doi.org/10.1007/s12221-022-4492-6 (2022)

    Article  Google Scholar 

  62. Wang, J, Wang, Y, Jue, R, Li, D, Zhao, Z, Cai, G, Cheng, D, Wang, X, “Liquid Metal/CNT Nanocomposite Coated Cotton Fabrics for Electromagnetic Interference Shielding and Thermal Management.” Cellulose, 29 (16) 8907–8918. https://doi.org/10.1007/s10570-022-04821-1 (2022)

    Article  CAS  Google Scholar 

  63. Brown, CW, “Ultraviolet, Visible, and Near-Infrared Spectrophotometers.” Appl. Spectrosc. Rev., 35 (3) 151–173. https://doi.org/10.1081/ASR-100101223 (2000)

    Article  CAS  Google Scholar 

  64. Chen, N, Liu, CK, Brown, EM, Latona, N, “Environment-Friendly Treatment to Reduce Photoyellowing and Improve UV-Blocking of Wool.” Polym. Degrad. Stab., 181 109319. https://doi.org/10.1016/j.polymdegradstab.2020.109319 (2020)

    Article  CAS  Google Scholar 

  65. Gies, P, Roy, C, McLennan, A, Pailthorpe, M, Hilfiker, R, Osterwalder, U, Monard, B, Moseley, H, Sliney, D, Wengraitis, S, Wong, J, Human, S, Bilimis, Z, Holmes, G, “Ultraviolet Protection Factors for Clothing: An Intercomparison of Measurement Systems.” Photochem. Photobiol., 77 (1) 58–67. https://doi.org/10.1562/0031-8655(2003)0770058UPFFCA2.0.CO2 (2003)

    Article  CAS  Google Scholar 

  66. Gambichler, T, Laperre, J, Hoffmann, K, “The European Standard for Sun-Protective Clothing: EN 13758.” J. Eur. Acad. Dermatol. Venereol., 20 (2) 125–130. https://doi.org/10.1111/j.1468-3083.2006.01401.x (2006)

    Article  CAS  Google Scholar 

  67. Ranjan Das, B, “UV Radiation Protective Clothing.” Open Text. J., 3 14–21. https://doi.org/10.2174/1876520301003010014 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Cukurova University, Scientific Research Projects under Grant Numbers: Project No: FBA-2020-13148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhami İlhan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlhan, İ., Esen, M., Karaaslan, M. et al. Investigation of EMI and UV–IR shielding properties of wool and cotton/elastane nanocomposite fabrics. J Coat Technol Res 20, 1407–1422 (2023). https://doi.org/10.1007/s11998-022-00753-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00753-4

Keywords

Navigation