Skip to main content
Log in

Vapor phase assembly of urea–amine compounds and their protection against the atmospheric corrosion of carbon steel

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Two kinds of polyamine compounds, bis-cyclohexylaminoethylurea (BCAU) and monocyclohexylaminoethylurea (MCAU), are synthesized via Mannich reaction. The anticorrosion films on carbon steel surface are prepared by the vapor phase assembly method. After 72 h volatilization at 50°C, the mass-loss for BCAU and MCAU in the closed space are 1.13% and 1.45%. The volatile-inhibiting sieve (VIS) test, the volatile-inhibiting ability test and the electrochemical impedance spectroscopy measurement are used to compare the prevention of the atmospheric corrosion by the assembly film. BCAU and MCAU have 92.44% and 87.56% inhibition efficiency for carbon steel in VIS test. On the basis of theoretical calculation and surface analysis, the protective film structures on carbon surface from the vapor phase assembly are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Crudden, CM, Horton, JH, Ebralidze, II, Zenkina, OV, McLean, AB, Drevniok, B, She, Z, Kraatz, HB, Mosey, NJ, Seki, T, Keske, EC, Leake, JD, Rousina-Webb, A, Wu, G, “Ultra Stable Self-Assembled Monolayers of N-Heterocyclic Carbenes On Gold.” Nat. Chem., 6 (5) 409–414 (2014)

    Article  CAS  Google Scholar 

  2. Vericat, C, Vela, ME, Benitez, G, Carro, P, Salvarezza, RC, “Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well Known System.” Chem. Soc. Rev., 39 (5) 1805–1834 (2010)

    Article  CAS  Google Scholar 

  3. Behpour, M, Mohammadi, N, “Investigation of Inhibition Properties of Aromatic Thiol Self-Assembled Monolayer for Corrosion Protection.” Corr. Sci., 65 331–339 (2012)

    Article  CAS  Google Scholar 

  4. Lee, J, Bong, J, Ha, YG, Park, S, Ju, S, “Durability of Self-Assembled Monolayers on Aluminum Oxide Surface for Determining Surface Wettability.” Appl. Surf. Sci., 330 445–448 (2015)

    Article  CAS  Google Scholar 

  5. Al Zoubi, W, Ko, YG, “Self-Assembly of Hierarchical N-Heterocycles-Inorganic Materials into Three-Dimensional Structure for Superior Corrosion Protection.” Chem. Eng. J., 356 850–856 (2019)

    Article  CAS  Google Scholar 

  6. Chen, T, Yang, H, Gao, HW, Fu, MK, Huang, SZ, Zhang, W, Hu, GX, Liu, FH, Ma, AQ, Sun, KJ, Wang, JB, “Adsorption and Orientation of 3,4-Dihydroxy-l-phenylalanine onto Tunable Monolayer Films.” J. Phys. Chem. C., 121 (21) 11544–11551 (2017)

    Article  CAS  Google Scholar 

  7. De la Fuente, D, Diaz, I, Simancas, J, Chico, B, Morcillo, M, “Long-Term Atmospheric Corrosion of Mild Steel.” Corr. Sci., 53 (2) 604–617 (2011)

    Article  Google Scholar 

  8. Ma, YT, Li, Y, Wang, FH, “Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content.” Corr. Sci., 51 (5) 997–1006 (2009)

    Article  CAS  Google Scholar 

  9. Gangopadhyay, S, Mahanwar, PA, “Recent Developments in the Volatile Corrosion Inhibitor (VCI) Coatings for Metal: A Review.” J. Coat. Technol. Res., 15 (14) 789–807 (2018)

    Article  CAS  Google Scholar 

  10. Zhang, DQ, Gao, LX, Zhou, GD, “Self-Assembled Urea-Amine Compound as Vapor Phase Corrosion Inhibitor for Mild Steel.” Surf. Coat. Tech., 204 1646–1650 (2010)

    Article  CAS  Google Scholar 

  11. Rammelt, U, Koehler, S, Reinhard, G, “Use of Vapour Phase Corrosion Inhibitors in Packages for Protecting Mild Steel Against Corrosion.” Corr. Sci., 51 (4) 921–925 (2009)

    Article  CAS  Google Scholar 

  12. Goncharova, OA, Andreev, NN, Luchkin, AY, Kuznetsov, YI, Andreeva, NP, Vesely, SS, “Protection of Copper by Treatment with Hot Vapors of Octadecylamine, 1,2,3-Benzotriazole, and Their Mixtures.” Mater. Corros., 70 161–168 (2019)

    Article  CAS  Google Scholar 

  13. Gao, G, Liang, CH, “1,3-Bis-diethylamino-propan-2-ol as Volatile Corrosion Inhibitor for Brass.” Corros. Sci., 49 (9) 3479–3493 (2007)

    Article  CAS  Google Scholar 

  14. Valdez, B, Schorr, M, Cheng, N, Beltran, E, Beltran, R, “Technological Applications of Volatile Corrosion Inhibitors.” Corros. Rev., 36 (3) 227–238 (2018)

    Article  CAS  Google Scholar 

  15. Chen, ZY, Huang, L, Zhang, GA, Qiu, YB, Guo, XP, “Benzotriazole as a Volatile Corrosion Inhibitor During the Early Stage of Copper Corrosion Under Adsorbed Thin Electrolyte Layers.” Corros. Sci., 65 214–222 (2012)

    Article  CAS  Google Scholar 

  16. Vorob’iova, VI, Chyhyrynets, OE, Vasyl’kevych, OI, “Mechanism of Formation of the Protective Films on Steel by Volatile Compounds of Rapeseed Cake.” J. Mater. Sci., 50 (5) 726–735 (2015)

    Article  Google Scholar 

  17. Estevão, LRM, Nascimento, RSV, “Modifications in the Volatilization Rate of Volatile Corrosion Inhibitors by Means of Host–Guest Systems.” Corr. Sci., 43 (6) 1133–1153 (2001)

    Article  Google Scholar 

  18. Valente, MAG, Teixeira, DA, Azevedo, DL, Feliciano, GT, Benedetti, AV, Fugivara, CS, “Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies.” Front. Chem., 5 1–18 (2017)

    Article  Google Scholar 

  19. Teixeira, DA, Valente, MAG, Benedetti, AV, Feliciano, GT, Da Silva, SC, Fugivara, CS, “Experimental and Theoretical Studies of Volatile Corrosion Inhibitors Adsorption on Zinc Electrode.” J. Brazil. Chem. Soc., 26 (3) 434–450 (2015)

    CAS  Google Scholar 

  20. Goncharova, OA, Kuznetsov, YI, Andreev, NN, Nad’kina, EA, “Depositing Nanolayers of Volatile Organic Compounds on Metals for Higher Resistance to Atmospheric Corrosion.” Prot. Met. Phys. Chem, 52 (7) 1140–1146 (2016)

    Article  CAS  Google Scholar 

  21. Zhang, DQ, Gao, LX, Zhou, GD, “Polyamine Compound as a Volatile Corrosion Inhibitor for Atmospheric Corrosion of Mild Steel.” Mater. Corros., 58 (5) 594–598 (2007)

    Article  CAS  Google Scholar 

  22. Mohamed, HA, Rehim, MHA, “Surface Active Hyperbranched Polyamide-Ester as a Corrosion Inhibitor for Carbon Steel in Both Neutral and Acidic Media.” Anti-Corros. Method. M., 62 (2) 95–102 (2015)

    Article  CAS  Google Scholar 

  23. Moghadam, Z, Shabani-Nooshabadi, M, Behpour, M, “Electrochemical Performance of Aluminium Alloy in Strong Alkaline Media by Urea and Thiourea as Inhibitor for Aluminium-Air Batteries.” J. Mol. Liq., 242 971–978 (2017)

    Article  CAS  Google Scholar 

  24. Lia, P, Lin, JY, Tan, KL, Lee, JY, “Electrochemical Impedance and X-ray Photoelectron Spectroscopic Studies of the Inhibition of Mild Steel Corrosion in Acids by Cyclohexylamine.” Electrochim. Acta, 42 (2) 605–615 (1997)

    Article  Google Scholar 

  25. An, ZX, “Study on Inhibition Performance and Mechanism of Organic Polyamine Volatile Corrosion Inhibitors.” Thesis, Shanghai University, 2004.

  26. Jeeva, M, Prabhu, GV, Boobalan, MS, Rajesh, CM, “Interactions and Inhibition Effect of Urea-Derived Mannich Bases on a Mild Steel Surface in HCI.” J. Phys. Chem. C, 119 (38) 22025–22043 (2015)

    Article  CAS  Google Scholar 

  27. Sudheer, Quraishi, MA, Ebenso, EE, Natesan, M, “Inhibition of Atmospheric Corrosion of Mild Steel by New Green Inhibitors Under Vapour Phase Condition.” Int. J. Electrochem. Sc., 7 (8) 7463–7475 (2012)

    CAS  Google Scholar 

  28. MIL-I-22110C-1985, Military Specification Inhibitors, Corrosion, Volatile, Crystalline Powder.

  29. JIS Z1519-2019, Volatile Corrosion Inhibitor for Iron and Steel.

  30. Squissato, AL, Silva, WP, Del Claro, ATS, Rocha, DP, Dornellas, RM, Richter, EM, Foster, CW, Banks, CE, Munoz, RAA, “Portable Electrochemical System Using Screen-Printed Electrodes for Monitoring Corrosion Inhibitors.” Talanta, 174 420–427 (2017)

    Article  CAS  Google Scholar 

  31. Zhang, DQ, An, ZX, Pan, QY, Gao, LX, Zhou, GD, “Comparative Study of Bis-piperidiniummethyl-urea and Mono-piperidiniummethyl-urea as Volatile Corrosion Inhibitors for Mild Steel.” Corros. Sci., 48 (6) 1437–1448 (2006)

    Article  CAS  Google Scholar 

  32. Amin, MA, El-Rehim, SSA, El-Sherbini, EEF, Bayoumi, RS, “The Inhibition of Low Carbon Steel Corrosion in Hydrochloric Acid Solutions by Succinic Acid—Part I. Weight Loss, Polarization, EIS, PZC, EDX and SEM Studies.” Electrochim. Acta, 52 (11) 3588–3600 (2016)

    Article  Google Scholar 

  33. Chen, CY, Xia, MZ, Wu, L, Zhou, C, Wang, FY, “Modeling the Interaction of Seven Bisphosphonates with the Hydroxyapatite (100) Face.” J. Mol. Model., 18 (9) 4007–4012 (2012)

    Article  CAS  Google Scholar 

  34. Messali, M, Lgaz, H, Dassanayake, R, Salghi, R, Jodeh, S, Abidi, N, Hamed, O, “Guar Gum as Efficient Non-Toxic Inhibitor of Carbon Steel Corrosion in Phosphoric Acid Medium: Electrochemical, Surface, DFT and MD Simulations Studies.” J. Mol. Struct., 1145 43–54 (2017)

    Article  CAS  Google Scholar 

  35. Belarbi, Z, Vu, TN, Farelas, F, Young, D, Singer, M, Nesic, S, “Thiols as Volatile Corrosion Inhibitors for Top-of-the-Line Corrosion.” Corrosion, 73 892–899 (2017)

    Article  CAS  Google Scholar 

  36. Cano, E, Bastidas, DM, Simancas, J, Bastidas, JM, “Dicyclohexylamine Nitrite as Volatile Corrosion Inhibitor for Steel in Polluted Environments.” Corrosion, 61 (5) 473–479 (2005)

    Article  CAS  Google Scholar 

  37. Fu, Q, Li, WX, Yao, YX, Liu, HY, Su, HY, Ma, D, Gu, XK, Chen, LM, Wang, Z, Zhang, H, Wang, B, Bao, XH, “Interface-Confined Ferrous Centers for Catalytic Oxidation.” Science, 328 (5982) 1141–1144 (2010)

    Article  CAS  Google Scholar 

  38. Li, J, Chen, DH, Zhang, DQ, Wang, YZ, Yu, YZ, Gao, LX, Huang, MH, “Preparation of Triazole Compounds via Click Chemistry Reaction and Formation of the Protective Self-Assembled Membrane Against Copper Corrosion.” Colloid. Surface. A, 550 145–154 (2018)

    Article  CAS  Google Scholar 

  39. Saha, SK, Murmu, M, Murmu, NC, Banerjee, P, “Evaluating Electronic Structure of Quinazolinone and Pyrimidinone Molecules for Its Corrosion Inhibition Effectiveness on Target Specific Mild Steel in the Acidic Medium: A Combined DFT and MD Simulation Study.” J. Mol. Liq., 224 629–638 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work was supported in part by NSFC project (Grant Nos. 51571140, 21776172). In addition, we are very thankful for the grant from the Science & Technology Commission of Shanghai Municipality (Grant Nos. 18DZ2204400, 17DZ2282800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Quan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HL., Ma, TF., Gao, LX. et al. Vapor phase assembly of urea–amine compounds and their protection against the atmospheric corrosion of carbon steel. J Coat Technol Res 17, 503–515 (2020). https://doi.org/10.1007/s11998-019-00301-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00301-7

Keywords

Navigation