Skip to main content
Log in

Improved homogeneity of plasma and coating properties using a lance matrix gas distribution in MW-PECVD

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Plasma reactors for the application of silicon oxide coatings (SiOx) are often customized to optimize the processes regarding substrate properties and targeted functionalities. The design of these reactors is often based on qualitative considerations. This paper evaluates the use of a numerical, free simulation software for continuous mechanical problems (OpenFOAM) as a tool to evaluate reactor design options. As demonstrator for this purpose serves a given reactor for large-area pulsed microwave plasmas with a precursor inlet in the form of a shower ring. Previous results indicate that the shower ring may lead to an inhomogeneity in plasma and coatings properties along the substrate surface. Thus, a new precursor inlet design shall be developed. For this, the distribution of the process gases in the reactor for a variety of gas inlet designs and gas flows was simulated and a design chosen based on the results. The reactor was modified accordingly, and the simulations correlated with experimental results of plasma and coating properties. The results show that, despite many simplifications, a simulation of the neutral gas distribution using an open-access software can be a viable tool to support reactor and process design development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vissing, KD, Aufskalierung plasmapolymerer Beschichtungsverfahren. Cuvillier Verlag, Göttingen (2008)

    Google Scholar 

  2. Leu, GF, “Experimentelle Untersuchung und Modellierung der Volumenprozesse in einem mikrowellenangeregten Hexamethyldisiloxan/Sauerstoff/Argon-Beschichtungsplasma.” Bergische Universität Wuppertal, Dissertation (2009)

  3. Bahroun, K, “Prozessentwicklung zur Abscheidung dehnbarer Barriereschichten auf PET mittels Plasmapolymerisation.” RWTH Aachen, Dissertation (2017)

  4. Coronell, DG, Jensen, KF, “Analysis of Transition Regime Flows in Low Pressure Chemical Vapor Deposition Reactors Using the Direct Simulation Monte Carlo Method.” J. Electrochem. Soc., 139 2264–2273 (1992)

    Article  Google Scholar 

  5. Groves, JF, Wadley, HNG, “Monte Carlo Modeling of Atom Transport During Directed Vapor Deposition.” MRS Online Proceedings Library Archive 441 (1996)

  6. Hash, D, Meyyappan, M, “A Direct Simulation Monte Carlo Study of Flow Considerations in Plasma Reactor Development for 300 mm Processing.” J. Electrochem. Soc., 144 (3999–4004) 1 (1997)

    Google Scholar 

  7. Kleijn, CR, Dorsman, R, Kuijlaars, KJ, Okkerse, M, van Santen, H, “Multi-scale Modeling of Chemical Vapor Deposition Processes for Thin Film Technology.” J. Cryst. Growth, 303 362–380 (2007)

    Article  Google Scholar 

  8. Economou, DJ, “Modeling and Simulation of Fast Neutral Beam Sources for Materials Processing.” Plasma Process. Polymers, 6 308–319 (2009)

    Article  Google Scholar 

  9. Huard, CM, Zhang, Y, Sriraman, S, Paterson, A, Kushner, MJ, “Role of Neutral Transport in Aspect Ratio Dependent Plasma Etching of Three-Dimensional Features.” J. Vac. Sci. Technol. A: Vac. Surf. Films, 35 05C301 (2017)

    Article  Google Scholar 

  10. Gochberg, LA, “Comparison of Navier–Stokes and DSMC Gas Flow Models in Semiconductor Process Chambers.” AIP Conf. Proc., 663 1073–1078 (2003)

    Article  Google Scholar 

  11. Bobzin, K, Brinkmann, RP, Mussenbrock, T, Bagcivan, N, Brugnara, RH, Schäfer, M, Trieschmann, J, “Continuum and Kinetic Simulations of the Neutral Gas Flow in an Industrial Physical Vapor Deposition Reactor.” Surf. Coat. Technol., 237 176 (2013)

    Article  Google Scholar 

  12. Economou, DJ, Bartel, TJ, Wise, RS, Lymberopoulos, DP, “Twodimensional Direct Simulation Monte Carlo (DSMC) of Reactive Neutral and Ion Flow in a High Density Plasma Reactor.” IEEE Trans. Plasma Sci., 23 581 (1995)

    Article  Google Scholar 

  13. Johannes, J, Bartel, T, Hebner, GA, Woodworth, J, Economou, DJ, “Direct Simulation Monte Carlo of Inductively Coupled Plasma and Comparison with Experiments.” J. Electrochem. Soc., 144 2448–2455 (1997)

    Article  Google Scholar 

  14. Nanbu, K, Morimoto, T, Suetani, M, “Direct Simulation Monte Carlo Analysis of Flows and Etch Rate in an Inductively Coupled Plasma Reactor.” IEEE Trans. Plasma Sci., 27 1379 (1999)

    Article  Google Scholar 

  15. Lapke, M, Mussenbrock, T, Brinkmann, RP, “The Multipole Resonance Probe. A Concept for Simultaneous Determination of Plasma Density, Electron Temperature, and Collision Rate in Low-Pressure Plasmas.” Appl. Phys. Lett., 93 (5) 51502 (2008)

    Article  Google Scholar 

  16. Lapke, M, Oberrath, J, Schulz, C, Storch, R, Styrnoll, T, Zietz, C, Awakowicz, P, Brinkmann, RP, Musch, T, Mussenbrock, T, Rolfes, I, “The Multipole Resonance Probe. Characterization of a Prototype.” Plasma Sources Sci. Technol., 20 (4) 42001 (2011)

    Article  Google Scholar 

  17. Lapke, M, “Analyse und Optimierung der Multipolresonanzsonde als industrietaugliches Plasmadiagnostiksystem”, Doctoral thesis, Ruhr-University Bochum, Bochum (2011)

  18. Kokura, H, Nakamura, K, Ghanashev, IP, Sugai, H, “Plasma Absorption Probe for Measuring Electron Density in an Environment Soiled with Processing Plasmas.” Jpn. J. Appl. Phys., 38 (Part 1, No. 9A) 5262–5266 (1999)

    Article  Google Scholar 

  19. Scharwitz, C, Boeke, M, Winter, J, “Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas.” Plasma Process Polymer, 6 (1) 76–85 (2009)

    Article  Google Scholar 

  20. Scharwitz, C, Böke, M, Hong, S-H, Winter, J, “Experimental Characterisation of the Plasma Absorption Probe.” Plasma Process Polymer, 4 (6) 605–611 (2007)

    Article  Google Scholar 

  21. Scharwitz, C, “The Plasma Absorption Probe: Optimisation by Model-based Design Variations.” Ph.D. thesis, Ruhr-Universität Bochum, Bochum (2008)

  22. Lapke, M, Mussenbrock, T, Brinkmann, RP, Scharwitz, C, Böke, M, Winter, J, “Modeling and Simulation of the Plasma Absorption Probe.” Appl. Phys. Lett., 90 (12) 121502 (2007)

    Article  Google Scholar 

  23. Schulz, C, Lapke, M, Oberrath, J, Storch, R, Styrmoll, T, Zietz, C, Awakowicz, P, Brinkmann, RP, Musch, T, Mussenbrock, T, Rolfes, I, “The Multipole Resonance Probe. Realization of an Optimized Radio-Frequency Plasma Probe Based on Active Plasma Resonance Spectroscopy.” IEEE Middle East Conference on Antennas and Propagation (MECAP 2010), Cairo, Egypt (2010)

  24. Schulz, C, Styrnoll, T, Storch, R, Awakowicz, P, Musch, T, Rolfes, I, “The Multipole Resonance Probe. Progression and Evaluation of a Process Compatible Plasma Sensor.” IEEE Sens. J., 14 (10) 3408–3417 (2014)

    Article  Google Scholar 

  25. Styrnoll, T, Bienholz, S, Lapke, M, Awakowicz, P, “Study on Electrostatic and Electromagnetic Probes Operated in Ceramic and Metallic Depositing Plasmas.” Plasma Sources Sci. Technol., 23 (2) 25013 (2014)

    Article  Google Scholar 

  26. Styrnoll, T, Harhausen, J, Lapke, M, Storch, R, Brinkmann, RP, Foest, R, Ohl, A, Awakowicz, P, “Process Diagnostics and Monitoring Using the Multipole Resonance Probe in an Inhomogeneous Plasma for Ion-Assisted Deposition of Optical Coatings.” Plasma Sources Sci. Technol., 22 (4) 45008 (2013)

    Article  Google Scholar 

  27. Grochla, D, Siegel, A, Hamann, S, Buenconsejo, PJS, Kieschnick, M, Brunken, H, König, D, Ludwig, A, “Time- and Space-Resolved High-Throughput Characterization of Stresses During Sputtering and Thermal Processing of Al–Cr–N Thin Films.” J. Phys. D: Appl. Phys., 46 (8) 84011 (2013)

    Article  Google Scholar 

  28. Otto, M, Analytische Chemie. Wiley, Weinheim (2014)

    Google Scholar 

  29. Kirchheim, D, Jaritz, M, Mitschker, F, Gebhard, M, Brochhagen, M, Hopmann, C, Böke, M, Devi, A, Awakowicz, P, Dahlmann, R, “Transport Mechanisms Through PE-CVD Coatings. Influence of Temperature, Coating Properties and Defects on Permeation of Water Vapour.” J. Phys. D: Appl. Phys., 50 (8) 85203 (2017)

    Article  Google Scholar 

  30. Dahlmann, R, “Permeation Through Plasma Polymerized Layers and Plasma Coating of Plastics Pipes and Hollow Bodies.” Doctoral thesis, RWTH Aachen University, Aachen (2002)

  31. Bird, GA, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (2003)

    Google Scholar 

  32. Scanlon, TJ, Roohi, E, White, C, Darbandi, M, Reese, JM, “An Open Source, Parallel DSMC Code for Rarefied Gas Flows in Arbitrary Geometries.” Comput. Fluids, 39 (10) 2078–2089 (2010)

    Article  Google Scholar 

  33. Trieschmann, J, Mussenbrock, T, “Transport of Sputtered Particles in Capacitive Sputter Sources.” J. Appl. Phys., 118 (3) 33302 (2015)

    Article  Google Scholar 

  34. Trieschmann, J, Schmidt, F, Mussenbrock, T, “Particle-in-Cell/Test-Particle Simulations of Technological Plasmas. Sputtering Transport in Capacitive Radio Frequency Discharges.” Plasma Process Polymer, 14 (1–2) 1600140 (2017)

    Article  Google Scholar 

  35. Greenshields, CJ, “OpenFOAM: The Open Source CFD Toolbox, User Guide 2.4.0.” https://openfoam.org/ (2015)

  36. Weller, HG, Greenshields, CJ, de Rouvray, C, “The OpenFOAM Foundation Ltd.” http://www.openfoam.org (2016)

  37. Borgnakke, C, Larsen, PS, “Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture.” J. Comput. Phys., 18 (4) 405–420 (1975)

    Article  Google Scholar 

  38. Morokoff, WJ, Kersch, A, “A Comparison of Scattering Angle Models.” Comput. Math. Appl., 35 (1–2) 155–164 (1998)

    Article  Google Scholar 

  39. Cardoso, RP, Belmonte, T, Henrion, G, Gries, T, Tixhon, E, “Analysis of Mass Transport in an Atmospheric Pressure Remote Plasma-Enhanced Chemical Vapor Deposition Process.” J. Appl. Phys., 107 (2) 24909 (2010)

    Article  Google Scholar 

  40. Behm, H, “Investigation of Plasma Processes and Their Influence on the Composite Properties of Polypropylene Coated by Means of Plasma Polymerization.” Doctoral thesis, RWTH Aachen University, Aachen (2016)

  41. Grochla, D, Banko, L, Pfetzing-Micklich, J, Behm, H, Dahlmann, R, Ludwig, A, “Si Micro-cantilever Sensor Chips for Space-Resolved Stress Measurements in Physical and Plasma-Enhanced Chemical Vapour Deposition.” Sens. Actuators A: Phys., 270 271–277 (2018)

    Article  Google Scholar 

  42. Gebhard, M, Mai, L, Banko, L, Mitschker, F, Hoppe, C, Jaritz, M, Kirchheim, D, Zekorn, C, de Los Arcos, T, Grochla, D, Dahlmann, R, Grundmeier, G, Awakowicz, P, Ludwig, A, Devi, A, “PEALD of SiO2 and Al2O3 Thin Films on Polypropylene: Investigations of the Film Growth at the Interface, Stress and Gas Barrier Properties of Dyads.” ACS Appl. Mater. Interfaces, 10 (8) 7422–7434 (2018)

    Article  Google Scholar 

  43. Grochla, D, Siegel, A, Hamann, S, Buenconsejo, P, Kieschnick, M, Brunken, H, König, D, Ludwig, A, “Time- and Space-Resolved High-Throughput Characterization of Stresses During Sputtering and Thermal Processing of Al–Cr–N Thin Films.” J. Phys. D: Appl. Phys., 46 084011 (2013)

    Article  Google Scholar 

  44. Daniel, R, Martinschitz, K, Keckes, J, Mitterer, C, “The Origin of Stresses in Magnetron-Sputtered Thin Films with Zone T Structures.” Acta Mater., 58 2621–2633 (2010)

    Article  Google Scholar 

  45. Bahre, H, Behm, H, Grochla, D, Böke, M, Dahlmann, R, Hopmann, Ch, Ludwig, A, Winter, J, “Film Stress of Amorphous Hydrogenated Carbon on Biaxially Oriented Polyethylene Terephthalate.” Plasma Process. Polymers, 12 (9) 896–904 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the Transregional Collaborative Research Center SFB-TR 87. We would like to express our thanks to the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Kirchheim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchheim, D., Wilski, S., Jaritz, M. et al. Improved homogeneity of plasma and coating properties using a lance matrix gas distribution in MW-PECVD. J Coat Technol Res 16, 573–583 (2019). https://doi.org/10.1007/s11998-018-0138-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0138-4

Keywords

Navigation