Skip to main content
Log in

Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, novel epoxy-based paint was synthesized to be applied on carbon steel. The composition of the paint mainly contains epoxy mixed with an electronically conductive polymer, polyaniline (PANI), alone and combined with its nanocomposite derivation containing ZnO nanorods as an additive. The antifouling properties of the paint applied on carbon steel were investigated. The conductive nanocomposite was synthesized by an in situ chemical oxidative method of aniline in the presence of ZnO nanorods and then well characterized. The antifouling behavior was evaluated for 9 months in the Caspian Sea and Persian Gulf. Results revealed that epoxy/PANI–ZnO nanocomposite coating can prevent accumulation of marine macroorganisms on the coated panel. In addition, the epoxy coating comprising PANI–ZnO nanocomposite as well as the epoxy/ZnO coating exhibit significant antibacterial characteristics against (E. coli and S. epi). We interpret the antifouling and antibacterial behavior of the paint with (i) the presence of emeraldine salt structure in PANI which develops a surface pH in a range of 4–5 preventing the adhesion of microorganisms on the surface and (ii) the antibacterial and antifouling properties of zinc oxide nanorods that occurred by the production of hydrogen peroxide on the surface of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Flemming, H-C, Murthy, PS, Venkatesan, R, Cooksey, K (ed) Marine and Industrial Biofouling. Springer, Los Angeles, 2009

  2. Almeida, E, Diamantino, TC, de Sousa, O, “Marine Paints: The Particular Case of Antifouling Paints.” Prog. Org. Coat., 59 2–20 (2007)

    Article  CAS  Google Scholar 

  3. Konstantinou, IK, Antifouling Paint Biocides. Springer, Berlin, 2011

    Google Scholar 

  4. Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient.” Prog. Org. Coat., 50 75–104 (2004)

    Article  CAS  Google Scholar 

  5. Kristensen, JB, Meyer, RL, Laursen, BS, Shipovskov, S, Besenbacher, F, Poulsen, CH, “Antifouling Enzymes and the Biochemistry of Marine Settlement.” Biotechnol. Adv., 26 471–481 (2008)

    Article  CAS  Google Scholar 

  6. Shan, C, JiaDao, W, HaoSheng, C, DaRong, C, “Progress of Marine Biofouling and Antifouling Technologies.” Chin. Sci Bull., 56 (7) 598–612 (2011)

    Article  Google Scholar 

  7. Kiil, S, Weinell, CE, Yebra, DM, Dam-Johansen, K, “Marine Biofouling Protection: Design of Controlled Release Antifouling Paints.” In: Ng, KM, Gani, R, Dam-Johansen, K (ed.) Chemical Product Design: Toward a Perspective Through Case Studies, pp. 181–238. Elsevier, Amsterdam, 2007

    Chapter  Google Scholar 

  8. Turner, A, “Marine Pollution from Antifouling Paint Particles.” Mar. Pollut. Bull., 60 159–171 (2010)

    Article  CAS  Google Scholar 

  9. Arai, T, Harino, H, Ohji, M, Langston, WJ, Ecotoxicology of Antifouling Biocides. Springer, Tokyo, 2009

    Book  Google Scholar 

  10. Clare, AS, “Towards Nontoxic Antifouling.” J. Mar. Biotechnol., 6 3–6 (1998)

    CAS  Google Scholar 

  11. Bazes, A, Silkina, A, Douzenel, P, Faÿ, F, Kervarec, N, Morin, D, et al., “Investigation of the Antifouling Constituents from the Brown Alga Sargassum muticum (Yendo) Fensholt.” J. Appl. Phycol., 21 (4) 395–403 (2009)

    Article  CAS  Google Scholar 

  12. MeiLing, C, YuanYuan, Q, Li, Y, Hong, G, “Structures and Antifouling Properties of Low Surface Energy Non-toxic Antifouling Coatings Modified by Nano-SiO2 Powder.” Sci. China Ser. B-Chem., 51 (9) 848–852 (2008)

    Article  Google Scholar 

  13. Vetere, V, Pdrez, M, Garcia, M, Deyfi, M, Stupak, M, delAmo, B, “A Non-toxic Antifouling Compound for Marine Paints.” Surf. Coat. Int., 12 586–589 (1999)

    Article  Google Scholar 

  14. Chambers, LD, Stokes, KR, Walsh, FC, Wood, RJK, “Modern Approaches to Marine Antifouling Coatings.” Surf. Coat. Technol., 201 3642–3652 (2006)

    Article  CAS  Google Scholar 

  15. Hellio, C, Broise, DDL, Dufosse’, L, Gal, YL, Bourgougnon, N, “Inhibition of Marine Bacteria by Extracts of Macroalgae: Potential Use for environmentall Friendly Antifouling Paints.” Mar. Environ. Res., 52 231–247 (2001)

    Article  CAS  Google Scholar 

  16. Pieper, RJ, Ekin, A, Webster, DC, Cassé, F, Callow, JA, Callow, ME, “Combinatorial Approach to Study the Effect of acrylic Polyol Composition on the Properties of Crosslinked Siloxane–Polyurethane Fouling-Release Coatings.” J. Coat. Technol. Res., 4 453–461 (2007)

    Article  CAS  Google Scholar 

  17. Ekin, A, Webster, DC, Daniels, JW, Stafslien, SJ, Cassé, F, Callow, JA, et al., “Synthesis, Formulation, and Characterization of Siloxane–Polyurethane Coatings for Underwater Marine Applications Using Combinatorial High-Throughput Experimentation.” J. Coat. Technol. Res., 4 435–451 (2007)

    Article  CAS  Google Scholar 

  18. Sommer, SA, Byrom, JR, Fischer, HD, Bodkhe, RB, Stafslien, SJ, Daniels, J, et al., “Effects of Pigmentation on Siloxane–Polyurethane Coatings and Their Performance as Fouling-Release Marine Coatings.” J. Coat. Technol. Res., 8 661–670 (2011)

    Article  CAS  Google Scholar 

  19. Mathiazhagan, A, Joseph, R, “Nanotechnology: A New Prospective in Organic Coating—Review.” Int. J. Chem. Eng. Appl., 2 225–237 (2011)

    Google Scholar 

  20. D’Souza, F, Bruin, A, Biersteker, R, Donnelly, G, Klijnstra, J, Rentrop, C, et al., “Bacterial Assay for the Rapid Assessment of Antifouling and Fouling Release Properties of Coatings and Materials.” J. Ind. Microbiol. Biotechnol., 37 363–370 (2010)

    Article  Google Scholar 

  21. Hsu, L-C, Fang, T-T, Hsiang, H-I, Fang, M-C, Method of Fabricating Nano-antifouling Boat Paint, Fisheries Agencey, Council of Agriculture, Executive Yuan, Tainan City (TW), 2009

  22. Neser, GK, Kacar, A, “The Antifouling Performance of Gelcoats Containing Biocides and Silver Ions in Seawater Environment.” J. Coat. Technol. Res., 7 (1) 139–143 (2010)

    Article  CAS  Google Scholar 

  23. Dumée, LF, Carbon-Nanotube-Based Membranes for Water Desalination by Membrane Distillation. Victoria University, Melbourne, 2011

    Google Scholar 

  24. Olsen, SM, Pedersen, LT, Hermann, MH, Kiil, S, Dam-Johansen, K, “Inorganic Precursor Peroxides for Antifouling Coatings.” J. Coat. Technol. Res., 6 187–199 (2009)

    Article  CAS  Google Scholar 

  25. Tam, KH, Djurišić, AB, Chan, CMN, Xi, YY, Tse, CW, Leung, YH, et al., “Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method.” Thin Solid Films, 516 6167–6174 (2008)

    Article  CAS  Google Scholar 

  26. Olsen, SM, “Controlled Release of Environmentally Friendly Antifouling Agents from Marine Coatings.” Ph.D. Thesis, Technical University of Denmark, 2009

  27. Li, Q, Mahendra, S, Lyon, DY, Brunet, L, Liga, MV, Li, D, et al., “Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications.” Water Res., 42 4591–4602 (2008)

    Article  CAS  Google Scholar 

  28. Wong, SWY, Leung, PTY, Djurišić, AB, Leung, KMY, “Toxicities of Nano Zinc Oxide to Five Marine Organisms: Influences of Aggregate Size and Ion Solubility.” Anal. Bioanal. Chem., 396 609–618 (2010)

    Article  CAS  Google Scholar 

  29. Oikonomou, EK, Iatridi, Z, Moschakou, M, Damigos, P, Bokias, G, Kallitsis, JK, “Development of Cu2+- and/or Phosphonium-Based Polymeric Biocidal Materials and Their Potential Application in Antifouling Paints.” Prog. Org. Coat., 75 190–199 (2012)

    Article  CAS  Google Scholar 

  30. Kumar, SA, Sasikumar, A, “Studies on novel Silicone/Phosphorus/Sulphur Containing Nano-hybrid Epoxy Anticorrosive and Antifouling Coatings.” Prog. Org. Coat., 68 189–200 (2010)

    Article  Google Scholar 

  31. Qu, Y-Y, Zhang, S-F, Preparation and Characterization of Novel Waterborne Antifouling Coating. J. Coat. Technol. Res., 9 (6) 667–674 (2012)

    Article  CAS  Google Scholar 

  32. Rahman, MM, Chun, H-H, Park, H, “Preparation and Properties of Waterborne Polyurethane-Silane: A Promising Antifouling Coating.” Macromol. Res., 19 (1) 8–13 (2011)

    Article  CAS  Google Scholar 

  33. Kumar, SA, Balakrishnan, T, Alagar, M, Denchev, Z, “Development and Characterization of Silicone/Phosphorus Modified Epoxy Materials and Their Application as Anticorrosion and Antifouling Coatings.” Prog. Org. Coat., 55 207–217 (2006)

    Article  Google Scholar 

  34. Wang, X-H, Li, J, Zhang, J-Y, Sun, Z-C, Yu, L, Jing, X-B, et al., “Polyaniline as Marine Antifouling and Corrosion-Prevention Agent.” Synth. Met., 102 1377–1380 (1999)

    Article  CAS  Google Scholar 

  35. Chen, S, Zhu, J, Zhou, T, He, B, Huang, W, Wang, B, “Preparation and Properties Study of Polyaniline Conductive Anti-Fouling Coatings.” Int. J. Electrochem. Sci., 7 8170–8184 (2012)

    CAS  Google Scholar 

  36. Brunet, L, Lyon, DY, Hotze, EM, Alvarez, PJJ, Wiesner, MR, “Comparative Photoactivity and Antibacterial Properties of C60 Fullerenes and Titanium Dioxide Nanoparticles.” Environ. Sci. Technol., 43 4355–4360 (2009)

    Article  CAS  Google Scholar 

  37. Ma, X-Y, Zhang, W-D, “Effects of Flower-Like ZnO Nanowhiskers on the Mechanical, Thermal and antibacterial Properties of Waterborne Polyurethane.” Polym. Degrad. Stab., 94 1103–1109 (2009)

    Article  CAS  Google Scholar 

  38. Leo, CP, Lee, WPC, Ahmad, AL, Mohammad, AW, “Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid.” Sep. Purif. Technol., 89 51–56 (2012)

    Article  CAS  Google Scholar 

  39. Amornpitoksuk, P, Suwanboon, S, Sangkanu, S, Sukhoom, A, Muensit, N, “Morphology, Photocatalytic and Antibacterial Activities of Radial Spherical ZnO Nanorods Controlled with a Diblock Copolymer.” Superlattices Microstruct., 51 103–113 (2012)

    Article  CAS  Google Scholar 

  40. Xu, T, Xie, CS, “Tetrapod-Like Nano-particle ZnO/Acrylic Resin Composite and Its Multi-Function Property.” Prog. Org. Coat., 46 297–301 (2003)

    Article  CAS  Google Scholar 

  41. Moezzi, A, McDonagh, AM, Cortie, MB, “Zinc Oxide Particles: Synthesis, Properties and Applications.” Chem. Eng. J., 185–186 1–22 (2012)

    Article  Google Scholar 

  42. M-Bonilla, A, F-García, M, “Polymeric Materials with Antimicrobial Activity.” Prog. Polym. Sci., 37 281–339 (2012)

    Article  Google Scholar 

  43. Anitha, S, Brabu, B, Thiruvadigal, DJ, Gopalakrishnan, C, Natarajan, TS, “Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-composite Membranes of Cellulose Acetate and ZnO.” Carbohydr. Polym., 87 1065–1072 (2012)

    Article  CAS  Google Scholar 

  44. Wu, C, Qiao, X, Chen, J, Wang, H, Tan, F, Li, S, “A Novel Chemical Route to Prepare ZnO Nanoparticles.” Mater. Lett., 60 1828–1832 (2006)

    Article  CAS  Google Scholar 

  45. Wahab, R, Kim, Y-S, Lee, K, Shin, H-S, “Fabrication and Growth Mechanism of Hexagonal Zinc Oxide Nanorods Via Solution Process.” J. Mater. Sci., 45 2967–2973 (2010)

    Article  CAS  Google Scholar 

  46. Zhao, QX, Klason, P, Willander, M, “Growth of ZnO Nanostructures by Vapor–Liquid–Solid Method.” Appl. Phys. A, 88 27–30 (2007)

    Article  CAS  Google Scholar 

  47. Shi, L, Wang, X, Lu, L, Yang, X, Wu, X, “Preparation of TiO2/Polyaniline Nanocomposite from a lyotropic Liquid Crystalline Solution.” Synth. Met., 159 2525–2529 (2009)

    Article  CAS  Google Scholar 

  48. Olad, A, Nosrati, R, “Preparation, Characterization, and Photocatalytic Activity of Polyaniline/ZnO Nanocomposite.” Res. Chem. Intermed., 38 323–336 (2012)

    Article  CAS  Google Scholar 

  49. Mostafaei, A, Zolriasatein, A, “Synthesis and Characterization of Conducting Polyaniline Nanocomposites Containing ZnO Nanorods.” Prog. Nat. Sci.: Mater. Int., 22 271–280 (2012)

    Article  Google Scholar 

  50. Eskizeybek, V, Sari, F, Gülce, H, Gülce, A, Avci, A “Preparation of the New Polyaniline/ZnO Nanocomposite and Its Photocatalytic Activity for Degradation of Methylene Blue and Malachite Green Dyes Under UV and Natural Sun Lights Irradiations.” Appl. Catal., B, 119–120 197–206 (2012)

    Google Scholar 

  51. Stejskal, J, Sapurina, I, Trchová, M, “Polyaniline Nanostructures and the Role of Aniline Oligomers in Their Formation.” Prog. Polym. Sci., 35 1420–1481 (2010)

    Article  CAS  Google Scholar 

  52. Deng, J, He, CL, Peng, Y, Wang, J, Long, X, Li, P, et al., “Magnetic and Conductive Fe3O4–Polyaniline Nanoparticles with Core–Shell Structure.” Synth. Met., 139 295–301 (2003)

    Article  CAS  Google Scholar 

  53. Khanna, PK, Singh, N, Charan, S, Visawanath, AK, “Synthesis of Ag/Polyaniline Nanocomposite Via an In Situ Photo-Redox Mechanism.” Mater. Chem. Phys., 92 214–219 (2005)

    Article  CAS  Google Scholar 

  54. Ameen, S, Akhtar, MS, Ansari, SG, Yang, O, Shin, HS, “Electrophoretically Deposited Polyaniline/ZnO Nanoparticles for p–n Heterostructure Diodes.” Superlattices Microstruct., 46 872–880 (2009)

    Article  CAS  Google Scholar 

  55. Patil, RC, Radhakrishnan, S, “Conducting Polymer Based Hybrid Nano-composites for Enhanced Corrosion Protective Coatings.” Prog. Org. Coat., 57 332–336 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of the Iran Nanotechnology Initiative Council (INIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Nasirpouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostafaei, A., Nasirpouri, F. Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications. J Coat Technol Res 10, 679–694 (2013). https://doi.org/10.1007/s11998-013-9487-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-013-9487-1

Keywords

Navigation