Skip to main content
Log in

The physical chemistry of organic coatings revisited—viewing coatings as a materials scientist

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Modern organic coatings are complex materials which must be observed and interpreted from the viewpoint of what has become known as Materials Science. Paints, as most of us first learned to name organic coatings, were originally designed and conceived as art forms. Visual artists developed their own applied colorants; part of an artist’s success depended on these skills (consider Leonardo da Vinci). Today, one’s skills as a materials scientist are perhaps the most crucial attributes of the true coatings scientist. Considering pigmented organic coating as random heterogeneous composite materials was the key to my research group’s contributions in improving the understanding of pigment volume concentrations (PVC) and critical PVC effects in coatings. Seeking to develop and improve electrochemical materials characterization techniques for measuring and predicting the corrosion protective properties of coatings has driven our research at North Dakota State University (NDSU) in this area. Analyzing the performance of protective coatings for exterior bronze statues and viewing these coatings from the materials requirements of the art conservator has directed our activities in conservation science. The use of the methods of modern electrochemical materials science has been the key to our development of Mg-rich primers for entirely Cr-free corrosion protection of aircraft alloys. Our work on developing methods to perform material measurements directly on coatings during their field use has directed our recent studies of embedded sensors in coatings. Our work in these areas will be reviewed and current results presented. Forecasts of future developments in these and other areas of coatings science will be presented, extrapolating from present developments in materials science. Incorporating materials concerns, especially the methods and concepts of nanomaterials science, into coatings science will be of paramount importance to future research and development in coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. National Center for Preservation Technology and Training, National Park Service, Department of Interior, 645 College Avenue, Natchitoches, LA 71457.

References

  1. Stokes, RJ, Fennel Evans, D, Fundamentals of Interfacial Engineering. Wiley-VCH, New York (1997)

  2. R Doherty (2007) Retrospective on R. W. Cahn and D. Turnbull. Science 317:56

    Article  CAS  Google Scholar 

  3. Torquato, S, Random Heterogeneous Materials, Ch. 1. Springer, New York (2001)

  4. Asbeck, WK, Van Loo, M, “Critical Pigment Volume Relationships,” Ind. Eng. Chem., 41 1470–1475 (1949)

    Article  CAS  Google Scholar 

  5. GP Bierwagen (1972) CPVC (Critical Pigment Volume Concentration) Calculations J. Paint Tech. 44(574): 46–55

    CAS  Google Scholar 

  6. Bierwagen GP, Hay TK (1975) The Reduced Pigment Volume Concentration as an Important Parameter in Interpreting & Predicting the Properties of Organic Coatings. Prog. Org. Coat. 3: 281–303

    Article  CAS  Google Scholar 

  7. Bierwagen GP, Saunders TE (1974) Studies of the Effects of Particle Size Distribution on the Packing Efficiency of Particles. Powder Tech. 10: 111–119

    Article  CAS  Google Scholar 

  8. Bierwagen GP, Mallinger RG (1982) Comparison of Prediction and Experiment for the Critical Pigment Volume Concentration in Thermoplastic Coatings. J. Coat. Technol. 54(690): 73

    Google Scholar 

  9. Bierwagen GP, Rich DC (1983) The Critical Pigment Volume Concentration in Latex Coatings. Prog. Org. Coat. 11:339–352

    Article  CAS  Google Scholar 

  10. Bierwagen GP (1992) A Re-Examination of the CPVC as a Transition Point in Coatings Behavior. J. Coat. Technol. 64(806): 71–75

    CAS  Google Scholar 

  11. Fishman RS, Kurtze DA, Bierwagen GP (1992) The Effects of Density Fluctuations in Organic Coatings. J. Appl. Phys. 72: 3116–3124

    Article  CAS  Google Scholar 

  12. Fishman RS, Kurtze DA, Bierwagen GP (1993) Pigment Inhomogeneity and Void Formation in Organic Coatings. Prog. Org. Coat. 21: 387–403

    Article  CAS  Google Scholar 

  13. Frith, WJ, Buscall, R, “Percolation and Dritical Exponents on Randomly Close-Packed Mixtures of Hard Spheres,” J. Chem. Phys., 95 5983–5989 (1991)

    Article  CAS  Google Scholar 

  14. Fishman RS, Hill ES, Storsved TK, Bierwagen GP (1996) Density Fluctuations in Hard Sphere Packings. J. Appl. Phys. 79: 729–735

    Article  CAS  Google Scholar 

  15. Dill, K, Bromberg, S, Stitger, D, Molecular Driving Forces, Ch. 23, 24, 27 and 33. Taylor & Francis Group, New York (2003)

  16. Jones, RAL, Richards, RW, Polymers at Surfaces and Interfaces. Cambridge University Press, Cambridge (1999)

  17. R Tothon (1995) Particulate-Filled Polymer Composites. Longman Scientific & Technical Publishers with J. Wiley, NY

    Google Scholar 

  18. Nanna ME, Bierwagen GP (2004) Mg-Rich Coatings: A new Paradigm for Cr-Free Corrosion Protection of Al Aerospace Alloys. JCT Res. 1: 69–81

    CAS  Google Scholar 

  19. Bideau, D, Dodds, J (eds) (1991) The Physics of Granular Media, Nova Science Publishers. Commack, NY

    Google Scholar 

  20. Battocchi D, Simões AM, Tallman DE, Bierwagen GP (2006) Electrochemical Behaviour of a Mg-Rich Primer in the Protection of Al Alloys. Corros. Sci. 48: 1292–1306

    Article  CAS  Google Scholar 

  21. Simões, AM, Battocchi, D, Tallman, DE, Bierwagen, GP, “SVET and SECM Examination of Cathodic Protection of Aluminum Using a Mg-rich Coating,” Corros. Sci., 49 3838–3849 (2007)

    Article  CAS  Google Scholar 

  22. G Bierwagen, D Battocchi, A Simões, A Stamness, D Tallman (2007) The Use of Multiple Electrochemical Techniques to Characterize Mg-rich Primers for Al Alloys. Prog. Org. Coat. 59: 172–178

    Article  CAS  Google Scholar 

  23. B Skerry, D Eden (1991) Characterization of Coating Performance by Electrochemical Noise Analysis Prog. Org. Coat. 19: 379

    Article  CAS  Google Scholar 

  24. Mills, DJ, Bierwagen, GP, Tallman, DE, Skerry, BS, “Characterization of Corrosion Under Marine Coatings by Electrochemical Noise Methods.” Proc. 12th International Corrosion Congress, Vol. 1, pp. 182–193 (paper 486). Houston, TX, Sept. 1993

  25. Mills DJ, Bierwagen GP, Tallman DE, Skerry BS (1995) Investigation of Anticorrosive Coatings by the Electrochemical Noise Method. Mater. Performance 34: 33–38

    CAS  Google Scholar 

  26. Mills, DJ, Berg, S, Bierwagen, GP, “Characterization of the Corrosion Control Properties of Organic Electrodeposition Coatings.” In: Scantlebury, D, Kendig, M (eds.) Proc. of the Symposium on Advances in Corrosion Protection by Organic Coatings II, Vol. 95–13, pp. 82–97. Special Publication of The Electrochemical Society, Proceedings, (1995)

  27. Bierwagen, GP, Balbyshev, V, Mills, D, Tallman, D, “Fundamental Considerations on Electrochemical Noise Methods to Examine Corrosion under Organic Coatings.” In: Scantlebury, D, Kendig, M (eds.) Proc. of the Symposium on Advances in Corrosion Protection by Organic Coatings II, Vol. 95–13, pp. 69–81. Special Publication of The Electrochemical Society, Proceedings, (1995)

  28. Scantlebury, D, Kendig, M (eds.), Proc. of the Symposium on Advances in Corrosion Protection by Organic Coatings II, Vol. 95–13, p. iii. Special Publication of The Electrochemical Society, Proceedings, (1995)

  29. Bierwagen GP (1994) Calculation of Noise Resistance from Simultaneous Electrochemical Voltage & Current Noise Data. J. Electrochem. Soc. 141: L155–L1957

    Article  CAS  Google Scholar 

  30. Kelly, RG, Scully, JR, Shoesmith, DW, Buchheit, RG “Electrochemical Techniques is Corrosion Science and Engineering,” Ch. 4 and Ch. 8. Marcel Dekker, New York (2003)

  31. Bierwagen GP, Wang X, Tallman DE (2003) The In-Situ Study of Coatings Using Embedded Electrodes for ENM Measurements Prog. Org. Coat. 46: 163–175

    Article  CAS  Google Scholar 

  32. Bierwagen GP, Jeffcoate C, Mills DJ, Li J, Balbyshev S, Tallman DE (1996) The Use of Electrochemical Noise Methods to Study Thick, High Impedance Coatings. Prog. Org. Coat. 29: 21–30

    Article  CAS  Google Scholar 

  33. Jeffcoate, C, Li, J, Bierwagen, G, “Problems encountered in Electrochemical Corrosion Testing of Flame Sprayed Powder Coatings.” In: Taylor, SR, Isaacs, H, Brooman, E (eds.) Electrochemical Soc. Symposium Proceedings 95–16, p. 60. (1995)

  34. Jeffcoate CS, Wocken TL, Bierwagen GP (1997) Electrochemical Assessment of Spray-Applied Thermoplastic Coating Barrier Properties. J. Mater. Eng. Performance 6: 417–420

    Article  CAS  Google Scholar 

  35. Li J, Jeffcoate CS, Biewagen GP, Mills DJ, Tallman DE (1998) Thermal Transition Effects and Electrochemical Properties in Organic Coatings: I. Initial Studies on Corrosion Protective Organic Coatings. Corrosion 54: 763–771

    CAS  Google Scholar 

  36. GP Bierwagen, J Li, L He, L Ellingson, DE Tallman (2000) Consideration of a New Accelerated Evaluation Method for Coating Corrosion Resistance—Thermal Cycling Testing. Prog. Org. Coat. 39: 67–78

    Article  CAS  Google Scholar 

  37. Bierwagen, G, He, L, Tallman, D, “Time-Temperature Effects in Polymer Coatings for Corrosion Protection as Analyzed by EIS.” In: Macromolecular Symposia, Vol. 187, pp. 909–918. Wiley-VCH, Weinheim, Germany, September 2002 (Presented at FATIPEC XXVI, Dresden, Germany, Sept. 9–11, 2002)

  38. G Bierwagen, D Tallman, J Li, L He (2003) EIS Studies of Coated Metals in Accelerated Exposure. Prog. Org. Coat. 46: 148–157

    CAS  Google Scholar 

  39. Private communication, Sebastien Duval, Institut Petrol France, Lyon, France (June 2001)

  40. Deflorian F, Rossi S, Fedrizzi L, Zanella C (2007) Comparison of organic coating accelerated tests and natural weathering considering meteorological data. Prog. Org. Coat. 59: 244–250

    Article  CAS  Google Scholar 

  41. L He, GP Bierwagen, DE Tallman (2003) Use of a Scanning Thermal Microscope to Examine Corrosion Protective Coatings in Exposure. Prog. Org. Coat. 47: 233–248

    Article  CAS  Google Scholar 

  42. Hinderliter, B, Allahar, KN, Bierwagen, GP, Tallman, DE, Croll, SG, “Thermal Cycling of Epoxy Coatings Using Room Temperature Ionic Liquids.” Electrochem. Soc., 155 (2008) (in press)

  43. Twite RL, Bierwagen GP (1998) Review of Alternatives to Chromate for Corrosion Protection of Aluminum Aerospace Alloys. Prog. Org. Coat. 33: 91–100

    Article  CAS  Google Scholar 

  44. Janata, J, Baer, D, Bierwagen, GP, Birnbaum, H, Buchheit, R, Davenport, O, Isaacs, H, Hedberg, F, Kendig, M, Mansfeld, F, Miller, B, Wieckowski, A, Wilkes, J, “Issues Related to Chromium Replacement.” Presented at 187th Meeting of The Electrochemical Society, May 21–26. Reno, Nevada (1995)

  45. Bierwagen GP, Twite R, ChenG, Tallman DE (1997) AFM, SEM and Electrochemical Characterization of Al Alloys Conversion Coatings, and Primers Used for Aircraft. Prog. Org. Coat. 32: 25–30

    Article  CAS  Google Scholar 

  46. Reynolds LB, Twite R, Donley MS, Bierwagen GP, Khobaib M (1997) Preliminary Evaluation of the Anticorrosive Properties of Aircraft Coatings by Electrochemical Methods. Prog. Org. Coat. 32: 31–34

    Article  CAS  Google Scholar 

  47. J Sinko (2001) Challenges of Chromate Inhibitor Pigments Replacement in Organic Coatings. Prog. Org. Coat. 42: 267–282

    Article  CAS  Google Scholar 

  48. Kendig, MW, Buchheit, RG, “Corrosion Inhibition of Aluminum andcAluminum Alloys by Soluble Chromates, Chromate Coatings, and Chromate-Free Coatings.” Corrosion, 59 379–400 (2003)

    CAS  Google Scholar 

  49. Buchheit, RG, Grant, RP, Hlava, PF, McKenzie, B, Zender, GL, “Local Dissolution Phenomena Associated with S Phase (Al2CuMg) Particles in Aluminum Alloy 2024-T3, ” J. Electrochem. Soc., 144 2621–2628 (1997)

    Article  CAS  Google Scholar 

  50. Ilevbare, GO, Scully, JR, Yuan, J, Kelly, RG, “Inhibition of Pitting Corrosion on Aluminum Alloy 2024-T3: Effect of Soluble Chromate Additions vs Chromate Conversion Coating,” Corrosion, 56 227–242 (2000)

    CAS  Google Scholar 

  51. Buchheit, RG, “Inhibition of Pitting Corrosion on Aluminum Alloy 2024-T3: Effect of Soluble Chromate Additions vs Chromate Conversion Coating,” J. Electrochem. Soc., 142 3994 (1995)

    Article  CAS  Google Scholar 

  52. Clark, WJ, Ramsey, JD, McCreery, RL, Frankel, GS, “A Galvanic Corrosion Approach to Investigating Chromate Effects on Aluminum Alloy 2024-T3.” J. Electrochem. Soc., 149 B179–B185 (2002), and other work by this group at Ohio State University

  53. P Gordon (2001) Bierwagen and Dennis E. Tallman, Choice and Measurement of Crucial Aerospace Coating System Properties. Prog. Org. Coat., 41 201–217

    Article  Google Scholar 

  54. Chattopadhyay AK, Zentner MR 1990 Aerospace and Aircraft Coatings. Federation Series on Coatings Technology, Federation of Societiesfor Paint Technology, Philadelphia, PA

    Google Scholar 

  55. Hegedus, CR, Spadafora, SJ, Pulley, DF, Eng, AT, Hirst, DJ, “Aerospace and Aircraft Coatings.” In: Koeleske, JV (ed.), Paint and Coating Testing Manual, 14th edn., pp. 683–695. ASTM Manual Series MNL17, 1995, ASTM Publication Code No. 28-017095-14, ASTM, Philadelphia, PA (Chapter 58)

  56. G Bierwagen, D Tallman, J Li, L He (2003) EIS Studies of Coated Metals in Accelerated Exposure. Prog. Org. Coat. 46: 148–157

    CAS  Google Scholar 

  57. Bierwagen, GP, Tallman, DE, Touzain, S, Smith, A, Twite, R, Balbyshev, V, Pae, Y, “Electrochemical Noise Methods Applied to the Study of Organic Coatings and Pretreatment.” Paper 380, Corrosion 98, Reviewed paper for the 1998 Annual Meeting of the Nat. Assoc. Corrosion Eng. (NACE), NACE Int., San Diego, CA, March 1998

  58. De Rosa RL, Grant JT, Kasten L, Donley M, Bierwagen GP (2000) Surface Analysis of Various Methods of Preparing Al 2024 T-3 Surface for Painting. Corrosion 56: 395–400

    Google Scholar 

  59. Yang XF, Tallman DE, Gelling VJ, Bierwagen GP, Kasten LS, Berg J (2001) Use of a Sol–Gel Conversion Coating for Aluminum Corrosion Protection. Surf. Coat. Tech. 140: 44–50

    Article  CAS  Google Scholar 

  60. Yang XF, Vang C, Tallman DE, Bierwagen GP, Croll SG Rohlik S (2001) Weathering Degradation of a Polyurethane Coating. Polym. Degrad. Stabil. 74: 341–351

    Article  CAS  Google Scholar 

  61. L He, GP Bierwagen, DE Tallman (2003) Use of a Scanning Thermal Microscope to Examine Corrosion Protective Coatings in Exposure. Prog. Org. Coat. 47: 233–248

    Article  CAS  Google Scholar 

  62. D Battocchi, G Bierwagen, D Tallman (2005) Emulation and Study of the Corrosion Behavior of Al Alloy 2024 T3 Using a Wire Beam Electrode (WBE) in Conjunction with Scanning Vibrating Electrode Technique (SVET). Corros. Sci. 47: 1165–1176

    Article  CAS  Google Scholar 

  63. Bierwagen GP (1987) The Science of Durability of Organic Coatings—A Foreword. Prog. Org. Coat. 15: 179–185

    Article  CAS  Google Scholar 

  64. Bierwagen, GP, Tallman, DE, Jeffcoate, CS, Zlotnick, J, “Defects & Heterogeneities in Corrosion Protective Organic Coatings Films and Their Effects on Performance.” In: Bierwagen, GP (ed.) Ch. 10 in American Chemical Society, ACS Symposium Series, Vol. 689, p. 123. Organic Coatings for Corrosion Control (1998)

  65. Bierwagen GP (1996) Reflections on Corrosion Control by Coatings. Prog. Org. Coat. 28: 43–48

    Article  CAS  Google Scholar 

  66. J He, VJ Gelling, DE Tallman, GP Bierwagen (2000) A Scanning Vibrating Electrode Study of Chromated-Epoxy Primer on Steel and Aluminum. J. Electrochem. Soc. 147: 3661–3666

    Article  CAS  Google Scholar 

  67. Bierwagen, G, Li, J, He, L, Tallman, D, “Fundamentals of the Measurement of Corrosion Protection and the Prediction of Its Lifetime in Coatings.” In: Martin, J, Bauer, D (ed.) Service Life Prediction Methodology and Metrologies, Chapter 14, pp. 316–350. Monterey, CA, Nov. 14–17, 1999, ACS Symposium Series # 805, ACS Books, Washington, DC (2001)

  68. Hinderleiter BR, Croll SG, Tallman DE, Su Q, Bierwagen GP (2006) Interpretation of EIS Results from Accelerated Exposure of Coated Metals based on Modeling of Coating Physical Properties Electrochim. Acta 51: 4505–4515

    Article  CAS  Google Scholar 

  69. Martin, JW, “Service Life Prediction from Accelerated Aging Test Results Using Reliability Theory and Life Testing Analysis.” In: Masters, L (ed.) Problems i Service Life Prediction of Building and Construction Materials, NATO ASI Series, Series E: No. 95 Applied Sciences, pp. 191–211. Nijhoff Publishers, Boston (1985)

  70. McKnight, ME, Martin, JW, “Advanced Methods and Models for Describing Coating Appearance.” Prog. Org. Coat., 34 152–159 (1998)

    Google Scholar 

  71. Martin, JW, “Repeatability and Reproducibility of Field Exposure Results.” In: Martin, J, Bauer, D (eds.) Service Life Prediction Methodology and Metrologies, Ch. 1, Monterey, CA, Nov. 14–17, 1999, ACS Symposium Series # 805, pp. 2–22. ACS Books, Washington, DC (2001)

  72. Staehle, RW, “Relationship Among Statistical Distributions, Accelerated Testing and Future Environments.” Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, ASTM Special Technical Publication STP 1194, pp. 3–26 (1994)

  73. Bierwagen, GP, Mills, DJ, Tallman, DE, “Electrochemical Noise Methods as a Possible In Situ Corrosion Sensing Technique.” Proc. 12th International Corrosion Congress, Vol. 6, pp. 4208–4218 (paper 576). Houston, TX (Sept. 3, 1993)

  74. Wang, X, Bierwagen, GP, Mabbutt, SJ, Tallman, D, “Some Non-conventional Measurement Electrode Configurations for Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements of Coated Metals and Their Possible Uses.” EuroCorr 2001, Lake Garda, Italy, Sept., 2001, CD-ROM Conf. Proc., Paper No. 61

  75. Bierwagen, GP, Wang, X, Tallman, DE, “The In-Situ Study of Coatings Using Embedded Electrodes for ENM Measurements.” Prog. Organic Coatings, Vol. 46, pp. 163–175 (2003), from International Workshop: “Application of Electrochemical Techniques to Organic Coatings,” Jurata, Poland May 2001

  76. Allahar, K, Su, Q, Bierwagen, G, Battocchi, D, Johnson Gelling, V, Tallman, D, “Further Studies of Embedded Electrodes for In-Situ Measurement of Corrosion Protective Properties of Organic Coatings.” Refereed Paper 06675 NACE Corrosion 2006 Conference, San Diego CA

  77. Allahar, K, Su, Q, Bierwagen, G, Battocchi, D, Johnson Gelling, V, Tallman, D, “Examination of the Feasibility of the Use of In-Situ Corrosion Sensors in Army Vehicles.” To be published in Proc.Tri-Services Corrosion Conference 2005, Orlando, FL

  78. Hinderliter, B, Allahar, K, Stafford, O, Bierwagen, G, Tallman, D, Croll, S, “Using Ionic Liquids to Measure Coating Properties Via Electrochemical Impedance Spectroscopy (EIS),” In review, J. Coat. Technol. Res.

  79. Su, Q, Allahar, K, Bierwagen, G, “Embedded Electrode Electrochemical Noise Monitoring of the Corrosion beneath Organic Coatings Induced by ac-dc-ac Conditions,” submitted to Electrochim. Acta, (2007) (in press)

  80. Fernández JE (2007) Materials for Aesthetic, Energy-Efficient, and Self-Diagnostic Buildings. Science 315: 1807–1810

    Article  CAS  Google Scholar 

  81. Hollaender, J, Ludwig, E, Hillebrand, S, Proc. of the Fifth International Tinplate Conference, p. 300. London (1992)

  82. Bethencourt M, Botana, FJ, Cano, MJ, Osuna, RM, Marcos, M, “Lifetime Prediction of Water-Borne Acrylic Paints by the AD-DC_AC Method,” Prog. Org. Coat., 49 275–281 (2004)

    Article  CAS  Google Scholar 

  83. Poelman, M, Olivier, MG, Gayarre, N, Petitjean, JP, “Electrochemical Study of Different Ageing Tests for the Evaluation of a Cataphoretic Epoxy Primer on Aluminium,” Prog. Org. Coat., 54 55–62 (2005)

    Article  CAS  Google Scholar 

  84. Rodriguez, MT, Gracenea, JJ, Garcia, SJ, Saura, JJ, Suay, JJ, “Testing the Influence of the Plasticizers Addition on the Anticorrosive Properties of an Epoxy Primer by Means of Electrochemical Techniques,” Prog. Org. Coat., 50 123–131 (2005)

    Article  CAS  Google Scholar 

  85. Cottis RA (2006) Sources of Electrochemical Noise in Corroding Systems. Russian J. Electrochem. 42: 497–505

    Article  CAS  Google Scholar 

  86. Sanchez-Amaya JM, Cottis RA, Botana FJ (2005) Shot Noise and Statistical Parameters for the Estimation of Corrosion Mechanisms. Corr. Sci. 47: 3280–3299

    Article  CAS  Google Scholar 

  87. See www.Nobel.org for details of 2000 Nobel Prize in Chemistry shared by these three scientists

  88. Tallman DE, Pae Y, Bierwagen GP (1999) Conducting Polymers and Corrosion: Poly(aniline) on Steel. Corrosion 55: 779–786

    CAS  Google Scholar 

  89. Tallman DE, Pae Y, Bierwagen GP (2000) Conducting Polymers and Corrosion 2: Polyaniline on Aluminum Alloys. Corrosion 56: 401–410

    Article  CAS  Google Scholar 

  90. J He, VJ Gelling, DE Tallman, GP Bierwagen, GG Wallace (2000) Conducting Polymers and Corrosion III: A Scanning Vibrating Electrode Study of Poly(3-Octyl Pyrrole) on Steel and Aluminum. J. Electrochem. Soc. 147: 3667–3672

    Article  CAS  Google Scholar 

  91. Tallman, DE, He, J, Gelling, VJ, Bierwagen, GP, Wallace, GG, “Scanning Vibrating Electrode Studies of Electroactive Conducting Polymers on Active Metals,” In: Zarras, P et al. (eds.) American Chemical Society Symposium Series, Ch. 15, Vol. 843, pp. 228–253. Conductive/Electroactive Polymers for Corrosion Prevention (2003)

  92. He, J, Battocchi, D, Simoes, AM, Tallman, DE, Bierwagen, GP, “Scanning Probe Studies of Active Coatings for Corrosion Control of Al Alloys.” ACS Symposium on Smart Coatings, Book Chapter (2007) (in press)

  93. Tallman, DE, Jensen, M, Bierwagen, G, “Studies of Electron Transfer at Aluminum Alloy Surfaces by Scanning Electrochemical Microscopy,” accepted for publication in “ECS Transactions—Cancun” Volume 3, “Critical Factors in Localized Corrosion 5: A Symposium in Honor of Hugh Isaacs,” from the Cancun meeting to be available in early 2007

  94. Gelling VJ, Wiest MM, Tallman DE, Bierwagen GP, Wallace GG (2001) Electroactive-conducting Polymers for Corrosion Control. 4. Studies of Poly(3-octyl pyrrole) and Poly(3-octadecyl pyrrole) on Aluminum 2024 T-3 Alloy. Prog. Org. Coat. 43: 149–157

    Article  CAS  Google Scholar 

  95. Tallman DE, Dewald MP, Vang CK, Wallace GG, Bierwagen GP (2004) Electrodeposition of Conducting Polymers on Active Metals by Electron Transfer Mediation. Curr. Appl. Phys. 4: 137–140

    Article  Google Scholar 

  96. Tallman, DE, Bierwagen, GP, “Corrosion Protection Using Conducting Polymers.” In: Chapter 15 in Handbook of Conducting Polymers, 3rd edn., pp. 15–1 to 15–53. Conjugated Polymers-Processing and Applications. CRC Press (2006)

  97. Nanna, ME, Bierwagen, GP, “Mg-Rich Coatings: A new Paradigm for Cr-Free Corrosion Protection of Al Aerospace Alloys.” J. Coat. Technol. Res., 1 69–81 (2004); awarded 1st place 2003 FSCT Roon Award Competition, ICE 2003, Philadelphia, PA, Nov. 14, 2003

  98. Hare, C, “Corrosion Control of Steel by Organic Coatings,” In: Review, RW (ed.) Uhlig’s Corrosion Handbook, 2nd edn., Ch. 55, pp.1023–1038. John Wiley & Sons, New York (2000)

  99. Felix S, Barajas R, Bastidas JM, Morcillo M, Feliu S (1993) Study of Protections Mechanism of Zinc-Rich paints by Electrochemical Impedance Spectroscopy. In: Scully JR, Silverman DC, Kendig M (eds) Electrochemical Impedance Spectroscopy, ASTM STP 1188. Amer. Soc. Testing and Materials (ASTM), Philadelphia, PA, pp. 438–449

    Google Scholar 

  100. Battocchi, D, Bierwagen, G, Stamness, A, Simoes, A, Tallman, D, “The Use of Multiple Electrochemical Techniques to Characterize Mg-rich Primers for Al Alloys.” Refereed Paper 06250 NACE Corrosion 2006 Conference, San Diego, CA

  101. Bierwagen, G, Battocchi, D, Simões, A, Stamness, A, Tallman, D, “The Use of Multiple Electrochemical Techniques to Characterize Mg-rich Primers for Al Alloys.” Prog. Org. Coat., 59 172–178 (2007) (from AEOTC 2005, Villard-de-Lans, France April 2005)

  102. Battocchi D, Simões AM, Tallman DE, Bierwagen GP (2006) Electrochemical Behavior of a Mg-rich Primer in the Protection of Al Alloys. Corros. Sci. 48: 1292–1306

    Article  CAS  Google Scholar 

  103. Hosking NC, Strom MA, Shipway PH, Rudd CD (2007) Corrosion Resistance of Zinc-Magnesium Coated Steel. Corros. Sci. 49: 3669–3695

    Article  CAS  Google Scholar 

  104. Battocchi D, Simões AM, Tallman DE, Bierwagen GP (2006) Comparison of Testing Solutions on the Protection of Al-Alloys Using a Mg-Rich Primer. Corros. Sci. 48: 1292–1306

    Article  CAS  Google Scholar 

  105. Simões, AM, Battocchi, D, Tallman, DE, Bierwagen, GP, “SVET and SECM Examination of Cathodic Protection of Aluminum Using a Mg-rich Coating,” Corros. Sci., 49 3838–3849 (2007)

  106. Battocchi, D, Bierwagen, G, Simões, A, Stamness, A, Tallman, D, “Mg-Rich Primer for Chromate Free Protective Systems on Al 2024 and Al 7075.” Eurocorr 2005 Proceedings, Book Chapter (2007) (in press)

  107. Hare, C, “Corrosion Control of Steel by Organic Coatings,” In: Review, RW (ed.) Uhlig’s Corrosion Handbook, 2nd edn., Ch. 55, pp. 1023–1038. John Wiley & Sons, New York (2000)

  108. Pereira D, Scantlebury JD, Ferreira MGS, Almeida ME (1990) The Application of Electrochemical Measurements to the Study and Behavior of Zinc-Rich Coatings. Corros. Sci. 30: 1135–1147

    Article  CAS  Google Scholar 

  109. Faidi SE, Scantlebury JD, Bullivant P, Whittle NT, Savin R, (1993) An Electrochemical Study of Zinc-Containing Epoxy Coatings on Mild Steel. Corros. Sci. 35: 1319–1328

    Article  CAS  Google Scholar 

  110. Gervasi CA, Di Sarli AR, Cavalcanti E, Ferraz O, Bucharsky EC, Real SG, Vilche JR (1994) The Corrosion Protection of Steel in Sea Water Using Zinc-Rich Alkyd Paints. An Assessment of the Pigment-Content Effect by EIS Corros. Sci. 36: 1963–1972

    Article  CAS  Google Scholar 

  111. He, J, Battocchi, D, Simoes, AM, Tallman, DE, Bierwagen, GP, “Scanning Probe Studies of Active Coatings for Corrosion Control of Al Alloys.” ACS Symposium on Smart Coatings, Book Chapter (2007) (in press)

  112. Battocchi, D, Bierwagen, G, Simões, A, Stamness, A, Tallman, D, “Mg-Rich Primer for Chromate Free Protective Systems on Al 2024 and Al 7075,” Eurocorr 2005, Book Chapter (2007) (in press)

  113. PCT/US04/033089 Filed 10/07/04: Magnesium Rich Coatings and Coating Systems, Inventors: Gordon Bierwagen, Dante Battocchi and Michael Nanna

  114. Bierwagen, G, Crawford, KK, Boudjouk, P, Battocchi, D, Brown, R, Griffin, J, “Buyer Beware and Seller Prepare: Improving the Likelihood of Forming an Academic-Industrial License Partnership.” Paper II.1, Invited presentation May 2997 at Nurnberg Coatings Congress, Nurnberg, Germany, May 7, 2007

  115. Battocchi, D, Bierwagen, G, Zentner, M, Brown, R, “Mg-rich Primer for Totally Chromate—Free Protective Systems on Al Alloys.” Paper IX.5, Invited presentation May 2997 at Nurnberg Coatings Congress, Nurnberg, Germany, May 8, 2007

  116. Hosking NC, Ström MA, Shipway PH, Rudd CD (2007) Corrosion Resistance of Zinc-Magnesium Coated Steel. Corros. Sci. 49: 3669–3695

    Article  CAS  Google Scholar 

  117. Haycock, DE, Nicholls, CJ, Urch, DS, Webber, MJ, Wiech, G, “The Electronic Structure of Magnesium Dialuminium Tetraoxide (Spinel) Using X-Ray Emission and X-Ray Photoelectron Spectroscopies.” J. Chem. Soc., Dalton Trans. 12 1785–1790 (1978)

    Google Scholar 

  118. Henry Moore’s bronze work “Knife Edge Mirror: Two Pieces”

  119. Scott, DA, Copper and Bronze in Art. Getty Publications, Getty Center, Los Angeles, CA (2002)

  120. Römich, R (ed.), New Conservation Methods for Outdoor Bronze Sculptures, European Commission, Directorate General XII-Science, Research & Development, B1049 Brussells, Belgium (1996) Final Report EUR 16637 EN

  121. Bierwagen, G, Shedlosky, TJ, Ellingson, L, “Electrochemical Studies of the Protection Bronzes from Corrosion by Organic Coatings.” Metal 2001: Proceedings of the ICOM Committee for Conservation Metals Working Group, 1-00, ICC-COM-UNESCO Metal 2001, Congress Mundial de Conservacion de Metales, Metals Working Group International Congress, Santiago, Chile, April 2–6, 2001 (published in 2003)

  122. Ellingson LA, Shedlosky TJ, Bierwagen GP, de la Rie ER, Brostoff LB (2004) The Use of Electrochemical Impedance Spectroscopy in the Evaluation of Coatings for Outdoor Bronze. Stud. Conserv. 49: 53–62

    CAS  Google Scholar 

  123. Webster, DC, Bennett, J, Kuebler, D, Kossuth, MB, Jonasdottir, S, “High Throughput Workflow for the Development of Coatings,” JCT CoatingsTech, 1(6) 34–39 (2004)

    CAS  Google Scholar 

  124. Chisholm B, Potyrailo R, Cawse J, Shaffer R, Brennan M, Molaison C, Whisenhunt D, Flanagan B, Olson D, Akhave J (2002) The Development of Combinatorial Chemistry Methods for Coating Development: I. Overview of the Experimental Factory. Prog. Org. Coat. 45: 313–321

    Article  CAS  Google Scholar 

  125. G Bierwagen, TJ Shedlosky, K Stanek (2003) Developing and Testing a New Generation of Protective Coatings for Outdoor Bronze Sculpture. Prog. Org. Coat. 48: 289–296

    Article  CAS  Google Scholar 

  126. Shedlosky, TJ, Huovinen, A, Webster, D, Bierwagen, G, “Development and Evaluation of Removable Protective Coatings on Bronze,” Metal 04: Proc. Int. Conference on Metals Conservation, p. 400. Canberra, Australia (Oct. 4–8, 2004)

  127. Huovinen, AM, Shedlosky, TJ, Bierwagen, GP, Webster, DC, “Combinatorial Formulation and Evaluation of Removable Protective Coatings on Bronze.” FSCT Advancements in Coatings Series: Research Methods in the 21st Century: A Toolkit for Competitive Advantage, New Orleans Marriott, New Orleans, LA, May 18–20 (2005)

  128. Shedlosky, T, Bierwagen, G, Webster, D, Huovinen, A, Protective Coating for Metals, US Patent Application 60/674, 220 filed April 20, 2005, Eur. Patent Offic 05760218.7 (2005)

  129. P Trulove, RA Mantz 2003 Electrochemical Properties of Ionic Liquids. In: Wassercheid P, Welton T (eds) Ionic Liquids in Synthesis, Wyley-VCH Verlag GmbH & Co., Weinheim, Germany, pp. 103–126

    Google Scholar 

  130. Ohno, H (ed.), Electrochemical Aspects of Ionic Liquids. Hoboken, New Jersey, Wiley Interscience (2005)

  131. Simões AM, Tallman DE, Bierwagen GP (2005) The Use of Ionic Liquids for the Electrochemical Characterization of Water Transport in Organic Coatings. Electrochem. Solid-State Lett. 8: B60–B63

    Article  CAS  Google Scholar 

  132. Hinderliter, B, Allahar, KN, Bierwagen, GP, Tallman, DE, Croll, SG, “Thermal Cycling of Epoxy Coatings Using Room Temperature Ionic Liquids.” J. Electrochem. Soc., 155 (3) (2008) (in press)

  133. AA Kornyshev (2007) Double-Layer in Ionic Liquids: Paradigm Change? J. Phys. Chem. B 111: 5545–5557

    Article  CAS  Google Scholar 

  134. Allahar, K, Hinderliter, B, Simoes, A, Tallman, D, Bierwagen, G, Croll, S, “Simulation of Wet-Dry Cycling of Organic Coatings using Ionic Liquids.” J. Electrochem. Soc., 154 177–185 (2007)

    Google Scholar 

  135. Hinderliter, B, Allahar, K, Stafford, O, Bierwagen, G, Tallman, D, Croll, S, “Using Ionic Liquids to Measure Coating Properties Via Electrochemical Impedance Spectroscopy (EIS),” In review, J. Coat. Technol. Res.

Download references

Acknowledgments

I would like to thank all of those in the coatings industry that helped and encouraged me in my studies of coatings, especially Gar Schurr, John Petty, John Gardon, Charles Kumins, Juergen Braun, and Percy Pierce. The help and advice of Werner Funke of the German Paint Research Institute (FPL) and the U. Stuttgart have been most important to me, both when I was in industry as well as my time in academia. Further, the interactions I have had with Prof. Pier Luigi Bonora of the University of Trento, Italy and Dr. Marcel Piens of the Coating Research Institute (CoRI) in Limlette, Belgium have played an important role in my academic career. The significance of my long-term partnership at NDSU with Prof. Dennis Tallman has been described above, but it has been so noteworthy that it again must be acknowledged. Further, my interactions with Profs. Stuart Croll and Dean Webster of the Dept. of Coatings and Polymeric Materials since they came to NDSU have been crucial to my research. Also, I would like to thank the Office of Naval Research (ONR) and Program Manager John Sedriks for helping my research group at NDSU to start our successful research program on corrosion protective coatings. Further, I would like to thank the Air Force Office of Scientific Research (AFOSR), and Program Managers Maj. Hugh DeLong, Lt. Col. Paul Trulove, and our current Program officer, Maj. Jennifer Gresham, for the support, guidance and encouragement they have provided in our research program. Finally, I acknowledge the support of the late Dr. Michael Donley of the Coatings Group in the Air Force Materials Lab at WPAFB, OH who gave so much help and encouragement to our program at NDSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Bierwagen.

Additional information

This paper was presented as the Mattiello Memorial Lecture at the 2007 FutureCoat! Conference, sponsored by Federation of Societies for Coatings Technology, October 3–5, 2007, in Toronto, Ont., Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierwagen, G. The physical chemistry of organic coatings revisited—viewing coatings as a materials scientist. J Coat Technol Res 5, 133–155 (2008). https://doi.org/10.1007/s11998-007-9066-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-007-9066-4

Keywords

Navigation