Skip to main content
Log in

Nanoencapsulation of Hydrophobic Food Flavor Ingredients and Their Cyclodextrin Inclusion Complexes

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Preservation of hydrophobic, volatile, food flavor ingredients during processing is a foremost concern for food manufacturers. Nanoencapsulation is a method, which enables achieving enhanced thermal stability, solubility, and antioxidant activity of flavors. Among the available techniques for nanoencapsulation, electrohydrodynamic technique and encapsulation of flavors in nanofibers give the opportunity to achieve enhanced efficiency and higher surface-to-volume ratio, with a more compact size equipment and a cost-effective process. Cyclodextrins have the potential to be used as nanocarriers with the capability to form complexes with various non-polar flavor molecules. The formed cyclodextrin inclusion complexes (ICs) can be included into biopolymers or can be electrospun to form a polymer-free nanofiber. Natural and modified types of cyclodextrins can be applied for encapsulation and development of inclusion complexes with flavor molecules. Higher thermal stability was achievable with γ-CD-ICs in most of the studied cases, due to larger size of the cavity, and higher strength of the formed complex. From the modified types of cyclodextrins, formed ICs of Mβ-CD showed higher stability, due to rigid structure of the molecule and HPβ-CD enabled achieving higher antioxidant properties, due to less strength of the formed complex and possibility for hydrogen donation. In comparison with polymeric nanofibers, polymer-free systems enabled higher loading of flavors. Concluding from the reported studies, electrospun nanofibers prepared from flavors and their CD-ICs can give the possibility to achieve higher thermal stability, enhanced solubility, antioxidant, and antibacterial properties together with prolonged shelf life of foods and can be applied in food processing and packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acton, Q. A. (2011). Banaras Hindu University: Preparation and characterization of hydroxypropyl-b-cyclodextrin inclusion complex of eugenol: differential pulse voltammetry and (1)H-NMR. In Issues in chemistry and general chemical research (Scholarly ed.). Atlanta.

  • Ahmed, J., Tiwari, B. K., Imam, S. H., & Rao, M. A. (2012). Starch-based polymeric materials and nanocomposites, Chemistry, Processing, and Applications. Boca Raton: Taylor and Francis Group, LLC.

    Book  Google Scholar 

  • Alehosseini, A., Ghorani, B., Sarabi-Jamab, M., & Tucker, N. (2017). Principles of electrospraying: a new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr, 1–18.

  • Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocoll, 81, 48–59.

    Article  CAS  Google Scholar 

  • Alvarez-Henano, M. V., Saavedra, N., Medina, S., Cartagena, C. J., Alzate, L. M., & Londono-Londono, J. (2018). Microencapsulation of lutein by spray-drying: characterization and stability analyses to promote its use as a functional ingredient. Food Chem, 256, 181–187.

    Article  CAS  Google Scholar 

  • Ambruster, F.C., Kooi, E.R., 1969 Production of cyclodextrin (US3425910A) Unilever Bestfoods North America, USA. Retrieved from: https://patentimages.storage.googleapis.com/6a/c8/0e/c5d6b517252ab6/US3425910.pdf

  • Aytac, Z., & Uyar, T. (2017). Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. Int J Pharm, 518, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., San Keskin, N. O., Tekinay, T., & Uyar, T. (2016). Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6, 46089–46099.

  • Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017a). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem, 233, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., Tekinay, T., & Uyar, T. (2017b). Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem, 231, 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Barnekow, R., Muche, S., Ley, J., & Sabater, C. (2007). Creation and production of liquid and dry flavours. In R. G. Berger (Ed.), Flavours and fragrances, chemistry, bioprocessing and sustainability. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Begum, H. A., & Rahman Khan, M. K. (2017). Study on the various types of needle based and needleless electrospinning system for nanofiber production. Int J Tex Sci, 6, 110–117.

    Google Scholar 

  • BeMiller, J., & Whistler, R. (2009). Starch chemistry and technology (Third ed.). USA: Elsevier Inc..

    Google Scholar 

  • Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 28, 325–347.

    Article  CAS  PubMed  Google Scholar 

  • Bhushani, J. A., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol, 38, 21–33.

    Article  CAS  Google Scholar 

  • Blanco-Padilla, A., López-Rubio, A., Loarca-Piña, G., Gómez-Mascaraque, L. G., & Mendoza, S. (2015). Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT - Food Sci Technol, 63, 1137–1144.

    Article  CAS  Google Scholar 

  • Bleiel, S. B., Kent, R. M., & Brodkorb, A. (2017). Encapsulation efficiency and capacity of bioactive delivery systems. In Y. H. Roos & Y. D. Livney (Eds.), Engineering foods for bioactives stability and delivery. New York: Springer.

    Google Scholar 

  • Branta Lopes, D., Speranza, P., & Alves Macedo, G. (2016). A new approach for flavor and aroma encapsulation. In A. M. Grumezescu (Ed.), Novel approaches of nanotechnology in food, Nanotechnology in the Agri-Food industry (pp. 623–661). UK: Elsevier Inc..

    Chapter  Google Scholar 

  • Casper, C. I., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 37, 573–578.

  • Celebioglu, A., & Uyar, T. (2012). Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale, 4, 621–631.

    Article  CAS  PubMed  Google Scholar 

  • Celebioglu, A., & Uyar, T. (2018). Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal. J Inclu Phenom Mol Recog Chem, 90, 135–141.

    Article  CAS  Google Scholar 

  • Celebioglu, A., Kayaci-Senirmak, F., Ipek, S., Durgun, E., & Uyar, T. (2016). Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct, 7, 3141–3153.

    Article  CAS  PubMed  Google Scholar 

  • Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018a). Fabrication of electrospun eugenol/cyclodextrin inclusion complex nanofibrous webs for enhanced antioxidant property, water solubility, and high temperature stability. J Agricult Food Chem, 66, 457–466.

    Article  CAS  Google Scholar 

  • Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018b). Thymol/cyclodextrin inclusion complex nanofibrous webs: enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int, 106, 280–290.

    Article  CAS  PubMed  Google Scholar 

  • Charumanee, S., Titwan, A., Sirithunyalug, J., Weiss-Greiler, P., Wolschann, P., Viernstein, H., Okonogi, S., 2006. Thermodynamics of the encapsulation by cyclodextrins. J Chem Tech Biotechnol 81, 523-529.

  • Chawda, P. J., Shi, J., Xue, S., & Quek, S. Y. (2017). Co-encapsulation of bioactives for food applications. Food Qual Safe, 1, 302–309.

    Article  CAS  Google Scholar 

  • ChemAxon, 2019. https://chemAxon.com, Accessed 11 February, 2019

  • Chranioti, C., & Tzia, C. (2015). Encapsulation of food ingredients. In T. Varzakas & C. Tzia (Eds.), Food engineering handbook, Food process engineering. Boca Roaton: CRC Press, Taylor & Francis group.

    Google Scholar 

  • Code of Federal Regulations, F.a.D.A.F., 2018a. Chapter E Animal drugs and related products, Part 582. Substances generally recognized as safe. Food and drug administration, Department of Health and Human Services.

  • Code of Federal Regulations, F.a.D.A.F., 2018b. Sec. 501.22 Animal Foods, labeling of spices, flavorings, colorings, and chemical preservatives. Food and Drug Administration, Department of Health and Human Services.

  • Code of Federal Regulations, F.a.D.A.F., 2018c. Subchapter E, Part 582.60 Synthetic flavoring substances and adjuvants. Food and Drug Administration, Department of Health and Human Services.

  • Crini, G. (2014). Review: a history of cyclodextrins. Chem Rev, 114, 10940–10975.

    Article  CAS  Google Scholar 

  • Crini, G., Fourmentin, S., Fenyvesi, E., Torri, G., Fourmentin, M., & Morin-Crini, N. (2018). Fundamentals and applications of cyclodextrins. In S. Fourmentin, C. G., & E. Lichtfouse (Eds.), Cyclodextrin fundamentals, reactivity and analysis. Springer.

  • de Souza Simoes, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, O. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances Colloid Interface Sci, 243, 23–45.

    Article  CAS  Google Scholar 

  • Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochem, 39, 1033–1046.

    Article  CAS  Google Scholar 

  • Dodzuik, H. (2006). Cyclodextrins and their complexes, Chemistry, Analytical Methods, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co.

    Book  Google Scholar 

  • Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2016). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Dry Technol, 35, 139–162.

    Article  CAS  Google Scholar 

  • Estevinho, B. N., & Rocha, F. (2017). A key for the future of the flavors in food industry. In A. Elena Oprea & A. M. Grumezescu (Eds.), Nanotechnology applications in food (pp. 1–19). Elsevier Inc.

  • Faridi Esfanjani, A., Jafari, S. M., Assadpoor, E., & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J Food Eng, 165, 149–155.

    Article  CAS  Google Scholar 

  • Faridi Esfanjani, A., Jafari, S. M., & Assadpoor, E. (2017). Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem, 221, 1962–1969.

    Article  CAS  PubMed  Google Scholar 

  • Fenyvesi, E., & Szente, L. (2016). Cyclodextrins in Food technology and human nutrition: benefits and limitations in 2012. Crit Rev Food Sci Nutr, 56, 1981–2004.

    Article  CAS  PubMed  Google Scholar 

  • French, D. (1957). The Schardinger dextrins. Adv Carbohydr Chem, 12, 189–260.

    CAS  PubMed  Google Scholar 

  • Freudenberg, K., & Cramer, F. (1948). Die Konstitution der Schardinger-Dextrine α, β und γ. Zeitschrift für Naturforschung B, 3, 464.

    Article  Google Scholar 

  • Fuenmayor, C. A., Mascheroni, E., Cosio, M. S., Piergiovanni, L., Benedetti, S., Ortenzi, M., Schiraldi, A., & Mannino, S. (2013). Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chem Eng Trans, 32, 1771–1776.

    Google Scholar 

  • Garcia-Saldana, J. S., Campas-Baypoli, O. N., Lopez-Cervantes, J., sanchez-Machado, D. I., cantu-Soto, E. U., & Rodriguez-Ramirez, R. (2016). Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chemi, 201, 94–100.

    Article  CAS  Google Scholar 

  • Ghaeb, M., Tavanai, H., & Kadivar, M. (2015). Electrosprayed maize starch and its constituents (amylose and amylopectin) nanoparticles. Polym Adv Technol, 26, 917–923.

    Article  CAS  Google Scholar 

  • Grumezescu, A.M., 2016. Encapsulations. Elsevier Inc., UK.

  • Grumezescu, A. M., & Holban, A. M. (2018). Role of materials science in food bioengineering. UK: Elsevier Inc..

    Google Scholar 

  • Hauser, P. J. (2011). Textile Dyeing. Croatia: InTech.

    Book  Google Scholar 

  • Havkin-Frenkel, D., & Belanger, F. C. (2008). Biotechnology in flavor production. Singapore: Blackwell Publishing Ltd.

    Book  Google Scholar 

  • Hostettmann, K. (2014). Handbook of chemical and biological plant analytical methods. UK: John Wiley and Sons Ltd.

    Google Scholar 

  • Huang, J.-R., Zhuang, H.-N., & Jin, Z.-Y. (2013). Introduction. In Z.-Y. Jin (Ed.), Cyclodextrin chemistry, preparation and application. Singapore: World Scientific Publishing Co. Pte. Ltd.

    Google Scholar 

  • Jafari, S. M. (2017a). Nanoencapsulation of food bioactive ingredients, principles and applications. UK: Elsevier Inc..

    Google Scholar 

  • Jafari, S. M. (2017b). An overview of nanoencapsulation techniques and their classification. In S. M. Jafari (Ed.), Nanoencapsulation technologies for the food and nutraceutical industries (pp. 1–34). London: Academic Press, Elsevier Inc..

    Google Scholar 

  • Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner, A., & Agarwal, S. (2018). Electrospun nanofiber reinforced composites: a review. Polym Chem, 9, 2658–2720.

    Google Scholar 

  • Kayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem, 133, 641–649.

    Article  CAS  Google Scholar 

  • Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agricult Food Chem, 61, 8156–8165.

    Article  CAS  Google Scholar 

  • Kayaci, F., Sen, H. S., Durgun, E., & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int, 62, 424–431.

    Article  CAS  Google Scholar 

  • Kfoury, M., Landy, D., Ruellan, S., Auezova, L., Greige-Gerges, H., & Fourmentin, S. (2016). Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J Org Chem, 12, 29–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M. K. I., Nazir, A., & Maan, A. A. (2016). Electrospraying: a novel technique for efficient coating of foods. Food Eng Rev, 9, 112–119.

    Article  CAS  Google Scholar 

  • Kumar, D. H. L., & Sarkar, P. (2017). Nanoemulsions for nutrient delivery in food. In S. Ranjan, N. Dasgupta, & E. Lichtfouse (Eds.), Nanoscience in food and agriculture 5 (Fourth ed.). Switzerland: Springer.

    Google Scholar 

  • Kumar, D. H. L., & Sarkar, P. (2018). Encapsulation of bioactive compounds using nanoemulsions. Environ Chem Lett, 16, 59–70.

    Article  CAS  Google Scholar 

  • Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. Int J Pharm, 453, 167–180.

    Article  CAS  Google Scholar 

  • Kwan, A., & Davidov-Padro, G. (2018). Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels. Food Chem, 250, 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release- a review. Int J Food Sci Technol, 41, 1–21.

    Article  CAS  Google Scholar 

  • MarketsandMarkets, 2018. Food flavors market by type (chocolate & browns, vanilla, fruits & nuts, dairy, spices), application (beverages, dairy, confectionery, bakery, meat, savory & snacks), origin (natural and artificial), form, and region - global forecast to 2023. Markets and Markets.https://www.marketsandmarkets.com/Market-Reports/food-flavors-market-93115891.html, Accessed 11 February, 2019

  • Marketsandmarkets, 2018a. Flavors & fragrances market by ingredients (natural, synthetic), end use (beverage, savory & snacks, bakery, dairy products, confectionery, consumer products, fine fragrances), and region (Asia Pacific, North America, Europe) - global forecast to 2022. MarketsandMarkets.https://www.marketsandmarkets.com/Market-Reports/flavors-fragrance-market-175163912. html, Accessed 11 February, 2019

  • Marketsandmarkets, 2018b. Food flavors market by type (chocolate, vanilla, fruits & nuts, others), origin (natural, synthetic), application (beverages, savory & snacks, bakery & confectionery, dairy & frozen products, others), & by region - global forecast to 2020. MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/food-flavors-market-93115891.html, Accessed 11 February, 2019

  • Mc Clements, D. J. (2012). Requirements for food ingredient and nutraceutical delivery systems. In N. Garti & D. J. Mc Clements (Eds.), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Cambridge: Woodhead Publishing.

    Google Scholar 

  • McBarron, J. (2011). Curcumin: the 21st century cure. Book Baby.

  • Mitt-uppatham, C., Nithanakul, M., & Supaphol, P. (2004). Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys, 205, 2327–2338.

    Article  CAS  Google Scholar 

  • Mungure, T. E., Roohinejad, S., Bekhit, A. E. D., Greiner, R., & Mallikarjunan, K. (2018). Potential application of pectin for the stabilization of nanoemulsions. Curr Opin Food Sci, 19, 72–76.

    Article  Google Scholar 

  • Nguyen, T. T. H., Si, J., Kang, C., Chung, B., Chung, D., & KIm, D. (2017). Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem, 214, 366–373.

    Article  CAS  PubMed  Google Scholar 

  • Price, S., & Price, L. (2011). Aromatherapy for health professionals E-book, Forth. Elsevier Health Sciences.

  • Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19.

  • PubChem, 2019. https://pubchem.ncbi.nlm.nih.gov/, Accessed 11 February, 2019

  • Qiu, N., Li, X., & Liu, J. (2017). Application of cyclodextrins in cancer treatment. J Incl Phenom Macrocycl Chem, 89, 229–246.

    Article  CAS  Google Scholar 

  • Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci, 13, 76–83.

    Article  CAS  Google Scholar 

  • Reineccius, G. (2017). Part B Food and Flavours. In A. Buethner (Ed.), Springer Handbook of odor. Leipzig: Springer International Publishing AG, Publishing services GmbH.

    Google Scholar 

  • Rekharshy, M., & Inoue, Y. (2004). Solvation effects in guest binding. In J. L. Atwood & J. W. Steed (Eds.), Encyclopedia of supramolecular chemistry (second ed., p. 1322). USA: Marcel Dekker Inc.

    Chapter  Google Scholar 

  • Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr Rev Food Sci Food Saf, 14, 269–284.

    Article  CAS  Google Scholar 

  • Saenger, W. (1980). Cyclodextrin inclusion compounds in research and industry. Angew Chemie Int Ed Engl, 19.

  • Saffarionpour, S., & Ottens, M. (2018). Recent advances in techniques for flavor recovery in liquid food processing. Food Eng Rev, 10, 81–94.

    Article  CAS  Google Scholar 

  • Santos, M.G., Carpinteiro, D.A., Thomazini, M., Rocha-Selmi, G.A., da CRuz, A.G., Rodrigues, C.E.C., Favaro-Trindade, C.S., 2014. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int 66, 454-462.

  • Shachman, M. (2004). The soft drinks companion: a technical handbook for the beverage industry. Boca Raton: CRC Press, Taylor & Francis Group L.L.C.

    Book  Google Scholar 

  • Shao, Y., Wu, C., Wu, T., Chen, S., Yuan, C., & Hu, Y. (2018). Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: formulation, characterization and antimicrobial activity. Carbohydr Polym, 193, 144–152.

    Article  CAS  PubMed  Google Scholar 

  • Smolinske, S. C. (1992). Handbook of food, drug, and cosmetic excipients. USA: CRC Press.

    Google Scholar 

  • Sung, B., Prasad, S., Gupta, S. C., Patchva, S., & Aggrawal, B. B. (2012). Regulation of inflammation-mediated chronic diseases by botanicals. In L.-F. Shyur & A. S. Y. Lau (Eds.), Advances in botanical research (pp. 57–132). Elsevier Inc.

  • Szejtli, J. (1984). In J. L. Atwood, J. E. D. Davies, & D. D. MacNicol (Eds.), Industrial applications of cyclodextrins, Inclusion compounds. Academic Press.

  • Szejtli, J. (1988). Cyclodextrin technology. Dordrecht: Springer Science+Business Media, B.V.

    Book  Google Scholar 

  • Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chem Rev, 98, 1743–1754.

  • Szejtli, J. (2004). Past, present, and future of cyclodextrin research. Pure Appl Chem, 76, 1825–1845.

  • Szejtli, J., & Huber, O. (1988). Advances in inclusion science. In Proceedings of the Fourth International Symposium on CYCLODEXTRINS. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Talegaonkar, S., Pandey, S., Rai, N., Rawat, P., Sharma, H., & Kumari, N. (2016). Exploring nanoencapsulation of aroma and flavors as new frontier in food technology. In A. M. Grumezescu (Ed.), Encapsulation, Nanotechnology in the agri-food industry (pp. 47–88). London: Elsevier Inc..

    Google Scholar 

  • Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. J Food Eng, 214, 245–256.

    Article  CAS  Google Scholar 

  • Villiers, A. (1891). Sur la fermentation de la fécule par l’action du ferment butyrique. Comptes rendusde l’Academie des sciences, CXII, 435.

    Google Scholar 

  • Wen, P., Zhu, D.-H., Wu, H., Zong, M.-H., Jing, Y.-R., & Han, S.-Y. (2016a). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Contr, 59, 366–376.

    Article  CAS  Google Scholar 

  • Wen, P., Zhu, D. H., Feng, K., Liu, F. J., Lou, W. Y., Li, N., Zong, M. H., & Wu, H. (2016b). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/beta-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem, 196, 996–1004.

    Article  CAS  PubMed  Google Scholar 

  • Wen, P., Zong, M.-H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: a novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol, 70, 56–68.

    Article  CAS  Google Scholar 

  • Willock, D. (2009). Molecular symmetry. UK: John Wiley & Sons Ltd.

    Book  Google Scholar 

  • Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018a). Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J Mater Sci, 53, 15837–15849.

    Article  CAS  Google Scholar 

  • Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018b). Menthol/cyclodextrin inclusion complex nanofibers: enhanced water-solubility and high-temperature stability of menthol. J Food Eng, 224, 27–36.

    Article  CAS  Google Scholar 

  • Yördem, O. S., Papila, M., & Menceloğlu, Y. Z. (2008). Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des, 29, 34–44.

    Article  CAS  Google Scholar 

  • Zeng, Z., Fang, Y., & Ji, H. (2012). Side chain influencing the interaction between β-cyclodextrin and vanillin. Flavour and Fragrance J, 27, 378–385.

    Article  CAS  Google Scholar 

  • Zhengyu, J. (2018). Cyclodextrins, preparation and applications in industry. Singapore: World Scientific Publishing Co. Pte Ltd.

    Google Scholar 

  • Zuidam, N. J., & Nedovic, V. A. (2010). Encapsulation technologies for active food ingredients and food processing. New York: Springer Science+Business Media, LLC.

    Book  Google Scholar 

  • Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulation for use in food products or processes and methods to make them. In N. J. Zuidam & V. Nedovic (Eds.), Encapsulation technologies for active food ingredients and food processing. New York: Springer-Verlag.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shima Saffarionpour.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffarionpour, S. Nanoencapsulation of Hydrophobic Food Flavor Ingredients and Their Cyclodextrin Inclusion Complexes. Food Bioprocess Technol 12, 1157–1173 (2019). https://doi.org/10.1007/s11947-019-02285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02285-z

Keywords

Navigation