Skip to main content
Log in

Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The present study focused on the application of pulsed electric fields (PEF) as an innovative pre-treatment technique to improve the recovery of polyphenols from two food by-products, cocoa bean shell (CBS) and coffee silver skin (CS). The effect of the different operating parameters on the extraction of polyphenols was optimised using the response surface methodology statistical approach. The optimised methodology was compared with conventional extraction and applied to several CBS and CS samples to classify the samples according to origin, variety and industrial treatment. PEF-assisted extraction had higher (approximately 20%) recovery yields of polyphenols and methylxanthines than conventional extraction. Finally, the results highlighted that the composition of bioactive compounds from different extracts of CBS and CS and their antioxidant properties depended on the origin, variety and industrial processing of the raw material. These by-products may be a promising source of natural compounds, with potential applications on food and health sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves, R. C., Costa, A. S., Jerez, M., Casal, S., Sineiro, J., Núñez, M. J., & Oliveira, B. (2010). Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: influence of technological factors. Journal of Agricultural and Food Chemistry, 58(23), 12221–12229. https://doi.org/10.1021/jf1031229.

    Article  CAS  Google Scholar 

  • Anderson, K. A., & Smith, B. W. (2002). Chemical profiling to differentiate geographic growing origins of coffee. Journal of Agricultural and Food Chemistry, 50(7), 2068–2075. https://doi.org/10.1021/jf011056v.

    Article  CAS  Google Scholar 

  • Arlorio, M., Coïsson, J. D., Travaglia, F., Varsaldi, F., Miglio, G., Lombardi, G., & Martelli, A. (2005). Antioxidant and biological activity of phenolic pigments from Theobroma cacao hulls extracted with supercritical CO 2. Food Research International, 38(8-9), 1009–1014. https://doi.org/10.1016/j.foodres.2005.03.012.

    Article  CAS  Google Scholar 

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurulb, M. H. A., Ghafoorc, K., Norulainid, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014.

    Article  CAS  Google Scholar 

  • Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silverskin. Food and bioprocess technology, 7(5), 1322–1332. https://doi.org/10.1007/s11947-013-1115-7

  • Barba, F. J., Brianceau, S., Turk, M., Boussetta, N., & Vorobiev, E. (2015a). Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food and Bioprocess Technology, 8(5), 1139–1148. https://doi.org/10.1007/s11947-015-1482-3.

    Article  CAS  Google Scholar 

  • Barba, F. J., Galanakis, C. M., Esteve, M. J., Frigola, A., & Vorobiev, E. (2015b). Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. Journal of Food Engineering, 167, 38–44. https://doi.org/10.1016/j.jfoodeng.2015.02.001.

    Article  CAS  Google Scholar 

  • Barba, F. J., Grimi, N., & Vorobiev, E. (2015c). Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. Journal of Food Engineering, 149, 222–228. https://doi.org/10.1016/j.jfoodeng.2014.10.028.

    Article  CAS  Google Scholar 

  • Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J. A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., & Vorobiev, E. (2015d). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798. https://doi.org/10.1016/j.foodres.2015.09.015.

    Article  Google Scholar 

  • Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52(9), 5898–5905. https://doi.org/10.1007/s13197-014-1668-0.

    Article  Google Scholar 

  • Bordiga, M., Locatelli, M., Travaglia, F., Coïsson, J. D., Mazza, G., & Arlorio, M. (2015). Evaluation of the effect of processing on cocoa polyphenols: Antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. International Journal of Food Science & Technology, 50(3), 840–848. https://doi.org/10.1111/ijfs.12760.

  • Boussetta, N., Lebovka, N., Vorobiev, E., Adenier, H., Bedel-Cloutour, C., & Lanoisellé, J. L. (2009). Electrically assisted extraction of soluble matter from chardonnay grape skins for polyphenol recovery. Journal of Agricultural and Food Chemistry, 57(4), 1491–1497. https://doi.org/10.1021/jf802579x.

    Article  CAS  Google Scholar 

  • Boussetta, N., Soichi, E., Lanoisellé, J. L., & Vorobiev, E. (2014). Valorization of oilseed residues: extraction of polyphenols from flaxseed hulls by pulsed electric fields. Industrial Crops and Products, 52, 347–353. https://doi.org/10.1016/j.indcrop.2013.10.048.

    Article  CAS  Google Scholar 

  • Brianceau, S., Turk, M., Vitrac, X., & Vorobiev, E. (2015). Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innovative Food Science & Emerging Technologies, 29, 2–8. https://doi.org/10.1016/j.ifset.2014.07.010.

    Article  CAS  Google Scholar 

  • Bruna, C., Eichholz, I., Rohn, S., Kroh, L. W., & Huyskens-Keil, S. (2009). Bioactive compounds and antioxidant activity of cocoa hulls (Theobroma cacao L.) from different origins. Journal of Applied Botany and Food Quality, 83, 9–13.

    CAS  Google Scholar 

  • Butt, M. S., & Sultan, M. T. (2011). Coffee and its consumption: benefits and risks. Critical Reviews in Food Science and Nutrition, 51(4), 363–373. https://doi.org/10.1080/10408390903586412.

    Article  CAS  Google Scholar 

  • Carrillo, L. C., Londoño-Londoño, J., & Gil, A. (2014). Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Research International, 60, 273–280. https://doi.org/10.1016/j.foodres.2013.06.019.

  • Costa, A. S., Alves, R. C., Vinha, A. F., Barreira, S. V., Nunes, M. A., Cunha, L. M., & Oliveira, M. B. P. (2014). Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Industrial Crops and Products, 53, 350–357. https://doi.org/10.1016/j.indcrop.2014.01.006

  • Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109–130. https://doi.org/10.1007/s12393-010-9015-3.

    Article  Google Scholar 

  • Dorenkott, M. R., Griffin, L. E., Goodrich, K. M., Thompson-Witrick, K. A., Fundaro, G., Ye, L., Stevens, J. R., Mostafa, A., O’Keefe, S. F., Hulver, M. W., & Neilson, A. P. (2014). Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. Journal of Agricultural and Food Chemistry, 62(10), 2216–2227. https://doi.org/10.1021/jf500333y.

    Article  CAS  Google Scholar 

  • El Darra, N., Turk, M. F., Ducasse, M. A., Grimi, N., Maroun, R. G., Louka, N., & Vorobiev, E. (2016). Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments. Food Chemistry, 194, 944–950. https://doi.org/10.1016/j.foodchem.2015.08.059.

    Article  Google Scholar 

  • Guglielmetti, A., D’Ignoti, V., Ghirardello, D., Belviso, S., & Zeppa, G. (2017). Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. Italian Journal of Food Science, 29, 409–423. https://doi.org/10.14674/IJFS-727.

  • Hečimović, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129(3), 991–1000. https://doi.org/10.1016/j.foodchem.2011.05.059.

    Article  Google Scholar 

  • Herald, T. J., Gadgil, P., & Tilley, M. (2012). High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture, 92(11), 2326–2331. https://doi.org/10.1002/jsfa.5633.

    Article  CAS  Google Scholar 

  • Herald, T. J., Gadgil, P., Perumal, R., Bean, S. R., & Wilson, J. D. (2014). High-throughput microplate HCl–vanillin assay for screening tannin content in sorghum grain. Journal of the Science of Food and Agriculture, 94(10), 2133–2136. https://doi.org/10.1002/jsfa.6538.

    Article  CAS  Google Scholar 

  • Kaplinsky, R. (2004). Competitions policy and the global coffee and cocoa value chains. Geneva: UNCTAD.

    Google Scholar 

  • Luengo, E., Álvarez, I., & Raso, J. (2013). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies, 17, 79–84. https://doi.org/10.1016/j.ifset.2012.10.005.

    Article  CAS  Google Scholar 

  • Martín, M. A., & Ramos, S. (2016). Cocoa polyphenols in oxidative stress: potential health implications. Journal of Functional Foods, 27, 570–588. https://doi.org/10.1016/j.jff.2016.10.008.

    Article  Google Scholar 

  • Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 49(1), 39–45. https://doi.org/10.1016/j.foodres.2012.08.005.

    Article  Google Scholar 

  • Martínez-Pinilla, E., Oñatibia-Astibia, A., & Franco, R. (2015). The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology, 6, 1–5. https://doi.org/10.3389/fphar.2015.00030.

  • Medina-Meza, I. G., & Barbosa-Cánovas, G. V. (2015). Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. Journal of Food Engineering, 166, 268–275. https://doi.org/10.1016/j.jfoodeng.2015.06.012.

    Article  CAS  Google Scholar 

  • Medina-Meza, I. G., Boioli, P., & Barbosa-Cánovas, G. V. (2013). Assessment of the effects of ultrasonics and pulsed electric fields on nutritional and rheological properties of raspberry and blueberry purees. Food and Bioprocess Technology, 9(3), 520–531. https://doi.org/10.1007/s11947-015-1642-5.

  • Misra, N. N., Martynenko, A., Chemat, F., Paniwnyk, L., Barba, F. J., & Jambrak, A. R. (2017). Thermodynamics, transport phenomena and electrochemistry of external field assisted non-thermal food technologies. Critical Reviews in Food Science and Nutrition, 1–32. https://doi.org/10.1080/10408398.2017.1287660.

  • Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition—a review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005.

    Article  Google Scholar 

  • Mussatto, S. I., Machado, E. M., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661–672. https://doi.org/10.1007/s11947-011-0565-z.

    Article  CAS  Google Scholar 

  • Narita, Y., & Inouye, K. (2012). High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chemistry, 135(3), 943–949. https://doi.org/10.1016/j.foodchem.2012.05.078.

    Article  CAS  Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2014). Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International, 65, 337–343. https://doi.org/10.1016/j.foodres.2014.09.015.

    Article  CAS  Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., & Vorobiev, E. (2015a). Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Research, 8, 128–134. https://doi.org/10.1016/j.algal.2015.01.014.

    Article  Google Scholar 

  • Parniakov, O., Roselló-Soto, E., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2015b). New approaches for the effective valorization of papaya seeds: extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Research International, 77, 711–717. https://doi.org/10.1016/j.foodres.2015.03.031.

    Article  CAS  Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848. https://doi.org/10.1016/j.foodchem.2015.07.096.

    Article  CAS  Google Scholar 

  • Patras, M. A., Milev, B. P., Vrancken, G., & Kuhnert, N. (2014). Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC–MSn. Food Research International, 63, 353–359. https://doi.org/10.1016/j.foodres.2014.05.031.

    Article  CAS  Google Scholar 

  • Puértolas, E., & Barba, F. J. (2016). Electrotechnologies applied to valorization of by-products from food industry: main findings, energy and economic cost of their industrialization. Food and Bioproducts Processing, 100, 172–184. https://doi.org/10.1016/j.fbp.2016.06.020.

    Article  Google Scholar 

  • Quagliariello, V., Iaffaioli, R. V., Falcone, M., Ferrari, G., Pataro, G., & Donsì, F. (2016). Effect of pulsed electric fields-assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds. Food Research International, 87, 115–124. https://doi.org/10.1016/j.foodres.2016.07.005.

    Article  CAS  Google Scholar 

  • Rajha, H. N., Boussetta, N., Louka, N., Maroun, R. G., & Vorobiev, E. (2014). A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Research International, 65, 462–468. https://doi.org/10.1016/j.foodres.2014.04.024.

    Article  CAS  Google Scholar 

  • Sarkis, J. R., Boussetta, N., Blouet, C., Tessaro, I. C., Marczak, L. D. F., & Vorobiev, E. (2015). Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innovative Food Science & Emerging Technologies, 29, 170–177. https://doi.org/10.1016/j.ifset.2015.02.011.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Steinberg, F. M., Bearden, M. M., & Keen, C. L. (2003). Cocoa and chocolate flavonoids: implications for cardiovascular health. Journal of the American Dietetic Association, 103(2), 215–223. https://doi.org/10.1053/jada.2003.50028.

    Article  Google Scholar 

  • Upadhyay, R., Ramalakshmi, K., & Rao, L. J. M. (2012). Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chemistry, 130(1), 184–188. https://doi.org/10.1016/j.foodchem.2011.06.057.

    Article  CAS  Google Scholar 

  • von Gadow, A., Joubert, E., & Hansmann, C. F. (1997). Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), a-tocopherol, BHT, and BHA. Journal of Agricultural and Food Chemistry, 45(3), 632–638. https://doi.org/10.1021/jf960281n.

    Article  Google Scholar 

  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312. https://doi.org/10.1016/j.tifs.2005.12.004.

    Article  CAS  Google Scholar 

  • Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W., & Witrowa-Rajchert, D. (2015). The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innovative Food Science & Emerging Technologies, 30, 69–78. https://doi.org/10.1016/j.ifset.2015.04.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project received funding from the European Union’s Seventh Framework programme for research and innovation under the Marie Skłodowska-Curie grant agreement No 609402 - 2020 researchers: Train to Move (T2M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letricia Barbosa-Pereira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa-Pereira, L., Guglielmetti, A. & Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol 11, 818–835 (2018). https://doi.org/10.1007/s11947-017-2045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2045-6

Keywords

Navigation