Skip to main content
Log in

Computational Fluid Dynamics in Drying Process Modelling—a Technical Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Powerful computational tools such as computational fluid dynamics (CFD) have now replaced the classic method of numerical analysis of drying processes based on experimental models. Its capabilities include the adaptability to model different flow processes such as drying, with high spatial and temporal resolution facilitates and an in-depth understanding of the heat, as well as mass and momentum transfer. CFD complements the experimental and analytical approaches by simulating a range of complex flow problems. Although CFD has immense industrial applications in fluid dynamics, its use in different drying simulations is still in early stages of development. This paper presents a thorough review of the computational power of CFD packages and their application in the drying process simulation. The review also covers different mathematical approaches used in drying models, the commonly available commercial CFD codes, and the turbulence models used in simulations of drying problems. The factors contributing to the complexity and computational load of such CFD-based models are discussed. The later sections of the paper discuss various bottlenecks in the application of CFD in drying, such as the complexity of the models for convoluted geometries, and the limited description regarding the turbulent interaction between different phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

Surface area of solid (m2)

C :

Concentration (kg m−3)

C p :

Specific heat (J kg−1 K−1)

D :

Effective moisture diffusivity (m2 s−1)

DEM:

Discrete element method

E :

The activation energy (J mol−1)

F :

Momentum exchanged between phases in motion (N m−3)

FEM:

Finite element method

FVM:

Finite volume method

\( \dot{I} \) :

Volumetric evaporation (kg m−3 s−1)

K :

Thermal conductivity (W m−1 K−1)

L :

Characteristic length (m)

Le :

Lewis number (α/D)

M :

Moisture content (kg kg−1)

MR :

Moisture ratio

P:

Pressure (Pa)

PTM:

Particle tracing method

Q :

Energy of dispersed phase (J m−3 s−1)

R:

Universal gas constant (8.316 J mol−1)

S T :

Thermal sink or source (W m−3)

T :

Temperature (K)

TBC:

Thermal boundary condition

V :

Volume fraction

W :

Molecular weight of water

a:

Normal vector at the surface

h :

Mass transfer coefficient (m s−1)

h :

Heat transfer coefficient (W m−2 K−1)

g :

Body force per unit mass (m s−2)

k :

Drying constant

k :

Evaporation constant

m :

Mass of solid (kg)

\( \dot{m} \) :

Mass flux (kg m−3 s−1)

p :

Static pressure (Pa)

q :

heat flux (J m−3 s−1)

t :

time (s)

u :

Velocity of fluid (m/s)

r :

Radius (m)

α :

Thermal diffusivity (m2 s−1)

β :

Empirical coefficient for shrinkage

λ :

Latent heat of vaporization in (J kg−1)

μ :

Dynamic viscosity of fluid (kg m−1 s−1)

ρ :

Density (kg/m3)

:

Laplace gradient function \( \left(\frac{\partial }{\partial x},\frac{\partial }{\partial x},\frac{\partial }{\partial x}\right) \)

τ :

Total tensor of strains (Pa)

⊗:

Tensor product

ξ :

Surface interface to a fixed value

e :

Equilibrium

f :

Fluid/drying medium

i :

Direction in the x, y, and z axes

in :

Interface layer

n :

Coefficient of drying

o :

Initial point (t = 0 s)

s :

Solid

v :

Water vapor

d :

Dry matter

a, b :

Components of mixture

w :

Water

df :

Drying front

sat :

Saturation

wb :

Wet bulb

References

  • Adamski, R., & Pakowski, P. (2013). Identification of effective diffusivities in anisotropic material of pine wood during drying with superheated steam. Drying Technology, 31(3), 264–268.

    Article  Google Scholar 

  • Agarwal, P. K., Genetti, W. E., & Lee, Y. Y. (1986). Coupled drying and devolatilization of coal in fluidized bed. Chemical Engineering Science, 41(9), 2373–2383.

    Article  CAS  Google Scholar 

  • Al Makky, A. (2012). Coding tutorials for computational fluid dynamics, http://www2.warwick.ac.uk/fac/sci/eng/study/pg/students/esrhaw/cfdebook.pdf. Accessed 18 Sept 2013.

  • Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., & de Juan, L. M. (2017). CFD modeling of pilot-scale countercurrent spray drying tower for the manufacture of detergent powder. Drying Technology, 35(3), 281–299.

    Article  CAS  Google Scholar 

  • Anandharamakrishnan, C., Gimbun, J., Stapley, A. G. F., & Rielly, C. D. (2010). A study of particle histories during spray drying using computational fluid dynamic simulations. Drying Technology, 28, 566–576.

    Article  CAS  Google Scholar 

  • Aregbesola, O. A., Ogunsinaa, B. S., Sofolahana, A. E., & Chimeb, N. N. (2015). Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal, 33, 83–89.

    Article  Google Scholar 

  • Assari, M. R., Tabrizi, H. B., & Saffar-Avval, M. (2007). Numerical simulation of fluid bed drying based on two-fluid model and experimental validation. Applied Thermal Engineering, 27, 422–429.

    Article  CAS  Google Scholar 

  • Assari, M. R., Tabrizi, H. B., & Najafpour, E. (2012). Energy and exergy analysis of fluidized bed dryer based on two-fluid modeling. International Journal of Thermal Sciences, 64, 213–219.

    Article  Google Scholar 

  • Aversa, M., Curcio, S., Calabro, V., & Iorio, G. (2007). An analysis of the transport phenomena occurring during food drying process. Journal of Food Engineering, 78, 922–932.

    Article  Google Scholar 

  • Baini, R., & Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of banana. Journal of Food Engineering, 79, 330–343.

    Article  Google Scholar 

  • Baini, R., & Langrish, T. A. G. (2008). An assessment of the mechanisms for diffusion in the drying of bananas. Journal of Food Engineering, 85, 201–214.

    Article  Google Scholar 

  • Barresi, A. A., Pisano, R., Rasetto, V., Fissore, D., & Marchisio, D. L. (2010). Model-based monitoring and control of industrial freeze-drying processes, effect of batch non-uniformity. Drying Technology, 28(5), 577–590.

    Article  CAS  Google Scholar 

  • Bernard, P. S., & Wallace, J. M. (2002). Turbulent flow: analysis, measurement and prediction. Hoboken: John Wiley and Sons Inc.

    Google Scholar 

  • Bolot, R., Li, J., & Coddet, C. (2004). Modeling of thermal plasma jets: a comparison between PHOENICS and FLUENT. Presented in Conference: Thermal Spray Solutions: Advances in Technology and Application (proceedings of International Thermal Spray Conference, mai 10–12 2004, Osaka, JAP), At Osaka (JAP).

  • Bono, G., & Awruch, A. M. (2007). Numerical study between structured and unstructured meshes for Euler and Navier-Stokes equations. Mecanica Computacional, 26, 3134–3146.

    Google Scholar 

  • Bourassa, J., Ramachandran, R. P., Paliwal, J., & Cenkowski, S. (2015). Drying characteristics and moisture diffusivity of distillers’ spent grains dried in superheated steam. Drying Technology, 33(15–16), 2012–2018.

    Article  Google Scholar 

  • Buck, A., Peglow, M., Naumann, M., & Tsotsas, E. (2012). Population balance model for drying of droplets containing aggregating nanoparticles. American Institute of Chemical Engineers Journal, 58(11), 3318–3328.

    Article  CAS  Google Scholar 

  • Chahed, J., Roig, V., & Masbernat, L. (2003). Eulerian–Eulerian two-fluid model for turbulent gas–liquid bubbly flows. International Journal of Multiphase Flow, 29, 23–49.

    Article  CAS  Google Scholar 

  • Chandramohan, V. P., & Talukdar, P. (2010). Three dimensional numerical modeling of simultaneous heat and moisture transfer in a moist object subjected to convective drying. International Journal of Heat and Mass Transfer, (53(21–22), 4638–4650.

  • Chen, X. D. (2008). The basic reaction engineering approach to modeling air-drying of small droplets or thin-layer materials. Drying Technology, 26(6), 627–639.

    Article  CAS  Google Scholar 

  • Chen, X. D. & Sun, D.-W. (2012). Modeling thermal processing using computational fluid dynamics (CFD). Ed. Sun, D.-W. Thermal Food Processing New Technologies and Quality Issues, CRC Press, 131–151.

  • Chen, X. D., & Xie, G. Z. (1997). Fingerprints of the drying behavior of particulate or thin layer food materials established using a reaction engineering model. Transactions of Institution of Chemical Engineers, Part C: Food and Bioproducts Processing, 75, 213–222.

    Article  Google Scholar 

  • Chen, Z., Wu, W., & Agarwal, P. K. (2000). Steam drying of coal part 1. Modeling the behavior of a single particle. Fuel, 79(8), 961–974.

    Article  CAS  Google Scholar 

  • Chen, C. C., Tsai, S. M., Cheng, H. P., & Chen, C. H. (2014). Analysis for heat transfer enhancement of helical and electrical heating tube heat exchangers in vacuum freeze-drying plant. International Communications in Heat and Mass Transfer, 58, 111–117.

    Article  Google Scholar 

  • Chiesa, M., Mathiesen, V., Melheim, J. A., & Halvorsen, B. (2005). Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed. Computer and Chemical Engineering, 29, 291–304.

    Article  CAS  Google Scholar 

  • Cloutier, A., Fortin, Y., & Dhatt, G. (1992). A wood drying finite element model based on the water potential concept. Drying Technology, 10(5), 1151–1181.

    Article  CAS  Google Scholar 

  • Crowe, C. T. (1991). The state-of-the-art in the numerical models for dispersed phase flows, in: Matsui, G., Serizawa, A., Tsuji, Y. (Eds.), Proceedings of the International Conference on Multiphase Flows, ‘91-Tsukuba, Tsukuba, Japan 3, 49–60.

  • Cunningham, M. J. (1992). Effective penetration depth and effective resistance in moisture transfer. Building and Enviromnent, 27(3), 379–386.

    Article  Google Scholar 

  • Curcio S. & Aversa, M. (2010). Transport phenomena and shrinkage modeling during convective drying of vegetables. Excerpt from the proceedings of the COMSOL conference 2009, Oct 8–10, Boston, MA, USA.

  • Curcio, S., Aversa, M., Calabro, V., & Iorio, G. (2008). Simulation of food drying: FEM analysis and experimental validation. Journal of Food Engineering, 87, 541–553.

    Article  Google Scholar 

  • Da-Silva, W. P., e-Silva, C. M. D. P. S., De-Sousa, J. A. R., & Farias, V. S. O. (2013). Empiirical and diffusion models to describe water transport into chickpea (Cicer arietinum L.) International Journal of Food Science and Technology, 48, 267–273.

    Article  CAS  Google Scholar 

  • Datta, A. K. (2007a). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: problem formulations. Journal of Food Engineering, 80(1), 80–95.

    Article  Google Scholar 

  • Datta, A. K. (2007b). Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: property data and representative results. Journal of Food Engineering, 80(1), 96–110.

    Article  Google Scholar 

  • De-Bonis, M. V., & Ruocco, G. (2007). Modeling local heat and mass transfer in food slabs due to air jet impingement. Journal of Food Engineering, 78, 230–237.

    Article  Google Scholar 

  • De-Bonis, M. V., & Ruocco, G. (2012). Computational transport phenomena in bioprocessing with the approach of the optimized source term in the governing equations. Heat and Mass Transfer, 48, 1485–1493.

    Article  CAS  Google Scholar 

  • Deen, N. G., Annaland, M. V. S., Van-der-Hoef, M. A., & Kuipers, J. A. M. (2007). Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 62, 28–44.

    Article  CAS  Google Scholar 

  • Defraeye, T. (2014). Advanced computational modeling for drying processes—a review. Applied Energy, 131, 323–344.

    Article  Google Scholar 

  • Defraeye, T., Blocken, B., & Carmeliet, J. (2011). Convective heat transfer coefficients for exterior building surfaces: existing correlations and CFD modeling. Energy Conversion and Management, 52(1), 512–522.

    Article  Google Scholar 

  • Defraeye, T., Blocken, B., & Carmeliet, J. (2012a). Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modeling. International Journal of Heat and Mass Transfer, 55, 112–124.

    Article  Google Scholar 

  • Defraeye, T., Herremans, E., Verboven, P., Carmeliet, J., & Nicolai, B. (2012b). Convective heat and mass exchange at surfaces of horticultural products: a microscale CFD modeling approach. Agricultural and Forest Meteorology, 162–163, 71–84.

    Article  Google Scholar 

  • Dick, E. (2009). Introduction to finite element methods in computational fluid dynamics. In J. F. Wendt (Ed.), Computational fluid dynamics (pp. 235–274). Berlin: Springer.

    Chapter  Google Scholar 

  • Dincer, I., & Sahin, A. Z. (2004). A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer, 47, 645–652.

    Article  CAS  Google Scholar 

  • Dixon, A. G., Taskin, M. E., Nijemeisland, M., & Stitt, E. H. (2011). Systematic mesh development for 3D CFD simulation of fixed beds: single sphere study. Computers and Chemical Engineering, 35(7), 1171–1185.

    Article  CAS  Google Scholar 

  • Ducept, F., Sionneau, M., & Vasseur, J. (2002). Superheated steam dryer: simulations and experiments on product drying. Chemical Engineering Journal, 86, 75–83.

    Article  CAS  Google Scholar 

  • Egorov, Y., Menter, F. R., Lechner, R., & Cokljat, D. (2010). The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flows. Flow, Turbulence and Combustion, 85(1), 139–165.

    Article  Google Scholar 

  • El-Behery, S. M., El-Askary, W. A., Hamed, M. H., & Ibrahim, K. A. (2013). Eulerian–Lagrangian simulation and experimental validation of pneumatic conveying dryer. Drying Technology, 31(12), 1374–1387. https://doi.org/10.1080/07373937.2013.796483.

    Article  CAS  Google Scholar 

  • ElGamal, R., Ronsse, F., Radwan, S. M., & Pieters, J. G. (2014). Coupling CFD and diffusion models for analyzing the convective drying behavior of a single rice kernel. Drying Technology, 32(3), 311–320.

    Article  Google Scholar 

  • Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464.

    Article  Google Scholar 

  • Erriguible, A., Bernada, P., Couture, F., & Roques, M. (2005). Modeling of heat and mass transfer at the boundary between a porous medium and its surroundings. Drying Technology, 23(3), 455–472.

    Article  Google Scholar 

  • Erriguible, A., Bernada, P., Couture, F., & Roques, M. (2006). Simulation of superheated steam drying from coupling models. Drying Technology, 24, 941–951.

    Article  Google Scholar 

  • Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717.

    Article  Google Scholar 

  • Farid, M. (2003). A new approach to modeling of single droplet drying. Chemical Engineering Science, 58(13), 2985–2993.

    Article  CAS  Google Scholar 

  • Feng, H., Yin, Y., & Tang, J. (2012). Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling. Food Engineering Reviews, 4, 89–106.

    Article  Google Scholar 

  • Ferziger, J. F., & Peric, M. (2002). Computational methods for fluid dynamics (3rd ed.). New York: Springers publications.

    Book  Google Scholar 

  • Fletcher, D. F., & Langrish, T. A. G. (2009). Scale-adaptive simulation (SAS) modeling of a pilot–scale spray dryer. Chemical Engineering Research and Design, 87(10), 1371–1378.

    Article  CAS  Google Scholar 

  • Fletcher, D. F., Guo, B., Harvie, D. J. E., Langrish, T. A. G., Nijdam, J. J., & Williams, J. (2006). What is important in the simulation of spray dryer performance and how do current CFD models perform? Applied Mathematical Modelling, 30, 1281–1292.

    Article  Google Scholar 

  • Frank, T., Jain, S., Matyushenko, A. A., & Garbaruk, A. V. (2012). The OECD/NEA MATIS-H benchmark—CFD analysis of water flow through a 5x5 rod bundle with spacer grids using ANSYS FLUENT and ANSYS CFX. Conference on Experimental Validation and Application of CFD and CMFD Codes in Nuclear Reactor Technology, OECD/NEA and IAEA Workshop, 10.-12. September 2012, Daejeon, South Korea.

  • Freire, J. T., Freire, F. B., Ferreira, M. C., & Nascimento, B. S. (2012). A hybrid lumped parameter/neural network model for spouted bed drying of pastes with inert particles. Drying Technology, 30(11–12), 1342–1353.

    Article  CAS  Google Scholar 

  • Frydman, A., Vasseur, J., Moureh, J., Sionneau, M., & Tharrault, P. (1998). Comparison of superheated steam and air operated spray dryers using computational fluid dynamics. Drying Technology, 16(7), 1305–1338.

    Article  CAS  Google Scholar 

  • Ganguly, A., Alexeenko, A. A., Schultz, S. G., & Kim, S. G. (2013). Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications. European Journal of Pharmaceutics and Biopharmaceutics, 85, 223–235.

    Article  CAS  Google Scholar 

  • Gao, X., Wang, J., Wang, S., & Li, Z. (2016). Modeling of drying kinetics of green peas by reaction engineering approach. Drying Technology, 34(4), 437–442.

    Article  CAS  Google Scholar 

  • Garavand, A. T., Rafiee, S., & Keyhani, A. (2011). Study on effective moisture diffusivity, activation energy abd mathematical modeling of thin layer drying kinetics of bell pepper. Australian Journal of Crop Science, 5(2), 128–131.

    Google Scholar 

  • Ghani, J. A., & Farid, M. M. (2010). Computational fluid dynamics analysis of retort thermal sterilization in pouches. In M. M. Farid (Ed.), Modeling of Food Processing (pp. 181–201). Boca Raton: CRC press.

    Chapter  Google Scholar 

  • Ghani, J. A., Supnick, R., & Rooney, P. (1991). The experience of flow in computer-mediated and in face-to-face groups. Proceedings of the Twelfth International Conference on Information Systems, New York, NY.

  • Ghazanfari, A., Emami, S., Tabil, L. G., & Panigrahi, S. (2006). Thin-layer drying of flax fiber: II. Modeling drying process using semi-theoretical and empirical models. Drying Technology, 24(12), 1637–1642.

    Article  CAS  Google Scholar 

  • Gimbun, J., Muhammad, N. I. S., & Law, W. P. (2015). Unsteady RANS and detached eddy simulation of the multiphase flow in a co-current spray drying. Chinese Journal of Chemical Engineering, 23, 1421–1428.

    Article  CAS  Google Scholar 

  • Gondret, P., Lance, M., & Petit, L. (2002). Bouncing motion of spherical particles in fluid. Physics of Fluids, 14(2), 643.

    Article  CAS  Google Scholar 

  • Grace, J. R., & Taghipour, F. (2004). Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technology, 139, 99–110.

    Article  CAS  Google Scholar 

  • Halder, A., & Datta, A. K. (2012). Surface heat and mass transfer coefficients for multiphase porous media transport models with rapid evaporation. Food and Bioproducts Processing, 90(3), 475–490.

    Article  Google Scholar 

  • Hall, C. W. (1975). Drying of farm crops. Westport: AVI Publishing Co. 1975. 17.

    Google Scholar 

  • Hall, C. W. (1987). The evolution and utilization of mathematical models for drying. Mathematical Modelling, 8, 806–812.

    Article  Google Scholar 

  • Hamawand, I. (2013). Drying steps under superheated steam: a review and modeling. Energy and Environment Research, 3(2), 107–125.

    Article  Google Scholar 

  • Hamzehei, M. (2011). CFD modeling and simulation of hydrodynamics in a fluidized bed dryer with experimental validation. International Scholarly Research Network. https://doi.org/10.5402/2011/131087.

  • Hashimoto, A., Stenstrom, S., & Kameoka, T. (2003). Simulation of convective drying of wet porous materials. Drying Technology, 21(8), 1411–1431.

    Article  Google Scholar 

  • Heldman, D. R., & Lund, D. B. (2007). Handbook of food engineering. Boca Raton: CRC press.

    Google Scholar 

  • Hlawitschka, M. W., Attarakih, M. M., Alzyod, S. S., & Bart, H.-J. (2016). CFD based extraction column design-chances and challenges. Chinese Journal of Chemical Engineering, 24(2), 259–263.

    Article  CAS  Google Scholar 

  • Hoffmann, T., Hailu Bedane, A., Peglow, M., Tsotsas, E., & Jacob, M. (2011). Particle–gas mass transfer in a spouted bed with adjustable air inlet. Drying Technology, 29(3), 257–265.

    Article  CAS  Google Scholar 

  • Honarvar, B., & Mowla, D. (2012). Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed. Brazilian Journal of Chemical Engineering, 29(2), 231–242.

    Article  CAS  Google Scholar 

  • Hosseini, S. H., Ahmadi, G., Rahimi, R., Zivdar, M., & Esfahany, M. N. (2010). CFD studies of solids hold-up distribution and circulation patterns in gas–solid fluidized beds. Powder Technology, 200, 202–215.

    Article  CAS  Google Scholar 

  • Hosseinizadeh, S. F., Darzi, A. A. R., & Tan, F. L. (2012). Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. International Journal of Thermal Sciences, 51, 77–83.

    Article  CAS  Google Scholar 

  • Huang, L., Kumar, K., & Mujumdar, A. S. (2003). A parametric study of the gas flow pattern and drying performance of co-current spray- dryer: results of a computational fluid dynamics study. Drying Technology, 21(6), 957–978.

    Article  CAS  Google Scholar 

  • Jamaleddine, T. J., & Ray, M. B. (2010). Application of computational fluid dynamics for simulation of drying processes: a review. Drying Technology, 28, 120–154.

    Article  CAS  Google Scholar 

  • Jamaleddine, T. K., & Ray, M. B. (2011). Numerical simulation of pneumatic and cyclonic dryers using computational fluid dynamics. Mass Transfer in Chemical Engineering Processes, 5, 85–110.

    Google Scholar 

  • Jang, J., & Arastoopour, H. (2014). CFD simulation of a pharmaceutical bubbling bed drying process at three different scales. Powder Technology, 263, 14–25.

    Article  CAS  Google Scholar 

  • Jaskulski, M., Wawrzyniak, P., & Zbiciński, I. (2015). CFD model of particle agglomeration in spray drying. Drying Technology, 33(15–16), 1971–1980.

    Article  CAS  Google Scholar 

  • Jiang, Y., Xu, P., Mujumdar, A. S., Qiu, S., & Jiang, Z. (2012). A numerical study on the convective heat transfer characteristics of pulsed impingement drying. Drying Technology, 30(10), 1056–1061.

    Article  CAS  Google Scholar 

  • Jin, Y., & Chen, Y. Z. (2009). Numerical study of the drying process of different sized particles in an industrial-scale spray dryer. Drying Technology, 27, 371–381.

    Article  Google Scholar 

  • Jin, Y., & Chen, X. D. (2010). A fundamental model of particle deposition incorporated in CFD simulation of an industrial milk spray dryer. Drying Technology, 28(8), 960–971.

    Article  Google Scholar 

  • Jin, G., Zhang, M., Fang, Z., Cui, Z., & Song, C. (2015). Numerical investigation on effect of food particle mass on spout elevation of a gas–particle spout fluidized bed in a microwave–vacuum dryer. Drying Technology, 33(5), 591–604.

    Article  CAS  Google Scholar 

  • Johansson, K., Wan-Wachem, B. G. M., & Almstedt, A. E. (2006). Experimental validation of CFD models for fluidized beds: influence of particle stress models, gas phase compressibility and air inflow models. Chemical Engineering Science, 61(5), 1705–1717.

    Article  CAS  Google Scholar 

  • Johnson, P., Cenkowski, S., & Paliwal, J. 2013. Superheated steam drying characteristics of single cylindrical compacts produced from wet distillers spent grain. The Canadian Society of Bioengineering Paper No. CSBE13-11. Written for presentation at CSBE 2013 annual conference, Saskatoon, Saskatchewan, 7-10 July 2013.

  • Jongsma, F. J., Innings, F., Olsson, M., & Carlsson, F. (2013). Large eddy simulation of unsteady turbulent flow in a semi-industrial size spray dryer. Dairy Science and Technology, 93, 373–386.

    Article  Google Scholar 

  • Jubaer, H., Afshar, S., Xiao, J., Chen, X. D., Selomulya, C., & Woo, M. W. (2017). On the importance of droplet shrinkage in CFD-modeling of spray drying. Drying Technology. https://doi.org/10.1080/07373937.2017.1349791.

  • Jurumenha, D. S., & Sphaier, L. A. (2011). Suitability analysis of lumped-capacitance formulations for adsorbed gas storage. Applied Thermal Engineering, 31(14–15), 2458–2463.

    Article  CAS  Google Scholar 

  • Katekawa, M. E., & Silva, M. A. (2006). A review of drying models including shrinkage effects. Drying Technology, 24, 5–20.

    Article  Google Scholar 

  • Kaushal, P., & Sharma, H. K. (2012). Convective dehydration kinetics of noodles prepared from taro (Colacasia esculenta), rice (Oryza sativa) and pigeonpea (Cajanus cajan) flours. Agricultural Engineering International: CIGR Journal, 15(4), 202–212.

  • Kaya, A., Aydin, O., & Dincer, I. (2006). Numerical modeling of heat and mass transfer during force convection drying of rectangular moist objects. Journal of Food Engineering, 49, 3094–3103.

    Google Scholar 

  • Kaya, A., Aydin, O., & Dincer, I. (2007). Numerical modeling of forced convection drying of cylindrical moist objects. Numerical Heat Transfer Part A, 51, 843–854.

    Article  Google Scholar 

  • Kaya, A., Aydin, O., & Dincer, I. (2008). Heat and mass transfer modeling of recirculating flows during air drying of moist objects for various dryer configurations. Numerical Heat Transfer Part A, 53, 18–34.

    Article  CAS  Google Scholar 

  • Keshani, S., Montazeri, M. H., Daud, W. R. W., & Nourouzi, M. M. (2015). CFD modeling of air flow on wall deposition in different spray dryer geometries. Drying Technology, 33(7), 784–795.

    Article  CAS  Google Scholar 

  • Kittiworrawatt, S., & Devahastin, S. (2009). Improvement of a mathematical model for low-pressure superheated steam drying of a biomaterial. Chemical Engineering Science, 64(11), 2644–2650.

    Article  CAS  Google Scholar 

  • Kondjoyan, A. (2006). A review on surface heat and mass transfer coefficients during air chilling and storage of food products. International Journal of Refrigeration, 29(6), 863–875.

    Article  CAS  Google Scholar 

  • Kopyt, P. & Gwarek, W. 2004. A comparison of commercial CFD software capable of coupling to external electromagnetic software for modeling of microwave heating process. In Proceedings of the 6th seminar in computer modeling and microwave power engineering, Austin, Texas, USA, 33-39.

  • Krawczyk, P. (2016). Numerical modeling of simultaneous heat and mass transfer during sewage sludge drying in solar dryer. In: IX International Conference on Computational Heat and Mass Transfer, ICCHMT2016. Procedia Engineering, 157, 230–237.

  • Kulasiri, D., & Woodhead, I. (2005). On modeling the drying of porous materials: analytical solutions to coupled partial differential equations governing heat and moisture transfer. Mathematical Problems in Engineering, 3, 275–291.

    Article  Google Scholar 

  • Kunkelmann, C., & Stephan, P. (2009). CFD simulation of boiling flows using the volume of-fluid method within OpenFOAM. Numerical Heat Transfer Part A: Applications, 56(8), 631–646.

    Article  CAS  Google Scholar 

  • Kuriakose, R., & Anandaramakrishnan, C. (2010). Computational fluid dynamics (CFD) applications in spray drying of food products. Trends in Food Science and Technology, 21, 657–683.

    Article  CAS  Google Scholar 

  • Kurnia, J. C., Sasmito, A. P., Tong, W., & Mujumdar, A. S. (2013). Energy-efficient thermal drying using impinging-jets with time-varying heat input—a computational study. Journal of Food Engineering, 114(2), 269–277.

    Article  Google Scholar 

  • Lang, H. & Todte, M. (2011). Core drying simulation and validation. AFS proceedings 2011, American Foundry Society, Schaumburg, IL USA. Paper 11-028.

  • Langrish, T. A. G., & Fletcher, D. F. (2001). Spray drying of food ingredients and applications of CFD in spray drying. Chemical Engineering and Processing, 40, 345–354.

    Article  CAS  Google Scholar 

  • Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulence flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.

    Article  Google Scholar 

  • Lewis, W. K. (1921). The rate of drying of solid materials. Journal of Industrial and Engineering Chemistry, 13, 427–432.

    Article  CAS  Google Scholar 

  • Li, M., & Duncan, S. (2008). Dynamic model analysis of batch fluidized bed dryers. Particle and Particle Systems Characterization, 25(4), 328–344.

    Article  CAS  Google Scholar 

  • Li, S., Stawczyk, J., & Zbicinski, I. (2007). CFD model of apple atmospheric freeze drying at low temperature. Drying Technology, 25(7–8), 1331–1339.

    Article  Google Scholar 

  • Li, T., Gopalakrishnan, P., Garg, R., & Shahnam, M. (2012a). CFD-DEM study of effect of bed thickness for bubbling fluidized beds. Particuology, 10, 532–541.

    Article  Google Scholar 

  • Li, Z., Kessel, J., Grunewald, G., & Kind, M. (2012b). CFD simulation on drying and dust integration in fluidized bed spray granulation. Drying Technology, 30(10), 1088–1098.

    Article  CAS  Google Scholar 

  • Li, Z., Kessel, J., Grunewald, G., & Kind, M. (2013). Coupled CFD-PBE simulation of nucleation in fluidized bed spray granulation. Drying Technology, 31(15), 1888–1896.

    Article  CAS  Google Scholar 

  • Liewkongsataporn, W., Patterson, T., & Ahrens, F. (2008). Pulsating jet impingement heat transfer enhancement. Drying Technology, 26(4), 433–442.

    Article  Google Scholar 

  • Ljung, A. L., Lundstrom, T. S., Marjavaara, B. D., & Tano, K. (2011). Convective drying of an individual iron ore pellet—analysis with CFD. International Journal of Heat and Mass Transfer, 54, 3882–3890.

    Article  Google Scholar 

  • Lo, S. (2005). Application of computational fluid dynamics to spray drying. Le Lait, INRA Editions, 85(4–5), 353–359.

    Article  Google Scholar 

  • Looi, A. Y., Golonka, K., & Rhodes, M. (2002). Drying kinetics of single porous particles in superheated steam under pressure. Chemical Engineering Journal, 87, 329–338.

    Article  CAS  Google Scholar 

  • Lu, T., Jiang, P., & Shen, S. (2005). Numerical and experimental investigation of convective drying in unsaturated porous media with bound water. Heat and Mass Transfer, 41, 1103–1111.

    Article  CAS  Google Scholar 

  • Massah, H. & Oshinowo, L. (2000). Advanced gas-solid multiphase flow models offer significant process improvements. Journal Articles by Fluent Software Users 2000. http://www.fluent.com/solutions/articles/ja112.pdf.

  • Meng, W. W. (2016). Computational fluid dynamics simulation of spray dryers. Boca Raton: CRC press.

    Google Scholar 

  • Menter, F. R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 23(4), 305–316.

    Article  Google Scholar 

  • Mezhericher, M., Levy, A., & Borde, I. (2008). Droplet–droplet interactions in spray drying by using 2D computational fluid dynamics. Drying Technology, 26, 265–282.

    Article  CAS  Google Scholar 

  • Mezhericher, M., Levy, A., & Borde, I. (2010). Theoretical models of single droplet drying kinetics: a review. Drying Technology, 28, 278–293.

    Article  CAS  Google Scholar 

  • Mezhericher, M., Levy, A., & Borde, I. (2015). Multi-scale multiphase modeling of transport phenomena in spray-drying processes. Drying Technology, 33(1), 2–23.

    Article  CAS  Google Scholar 

  • Mirade, P. S., & Daudin, J. D. (2006). Computational fluid dynamics prediction and validation of gas circulation in a cheess ripening room. International Dairy Journal, 16, 920–930.

    Article  Google Scholar 

  • Muhammad, M. D., Badr, O., & Yeung, H. (2015). Validation of a CFD melting and solidification model for phase change in vertical cylinders. Numerical Heat Transfer Part A: Applications, 68(5), 501–511.

    Article  Google Scholar 

  • Mujumdar, A. S., & Wu, Z. H. (2008). Thermal drying technologies—cost effective innovation aided by mathematical modeling approach. Drying Technology, 26(1), 145–153.

    Article  Google Scholar 

  • Murugesan, K., Suresh, H. N., Seetharamu, K. N., Aswatha Narayana, P. A., & Sundararajan, T. (2001). A theoretical model of brick drying as a conjugate problem. International Journal of Heat and Mass Transfer, 44, 4075–4086.

    Article  CAS  Google Scholar 

  • Nasrallah, B. S., & Perre, P. (1988). Detailed study of a model of heat and mass transfer during convective drying of porous media. International Journal of Heat and Mass Transfer, 31(5), 957–967.

    Article  Google Scholar 

  • Niamnuy, C., Devahastin, S., Soponronnarit, S., & Raghavan, G. S. V. (2008). Modeling coupled transport phenomena and mechanical deformation of shrimp during drying in a jet spouted bed dryer. Chemical Engineering Science, 63, 5503–5512.

    Article  CAS  Google Scholar 

  • Nicolai, B. M., Verboven, P., & Scheerlinck, N. (2001). Chaper 4: The modeling of heat and mass transfer. In L. M. M. Tijskens, M. L. A. T. M. Hertog, & B. M. Nicolai (Eds.), Food process Modeling. England: CRC press. Woodhead Publishing Ltd.

    Google Scholar 

  • Nijdam, J. J., Guo, B., Fletcher, D. F., & Langrish, T. A. G. (2006). Validation of the Lagrangian approach for predicting turbulent dispersion and evaporation of droplets within a spray. Drying Technology, 24, 1373–1379.

    Article  CAS  Google Scholar 

  • Nishiyama, Y., Cao, W. Y., & Li, B. (2006). Grain intermittent drying characteristic analyzed by a simplified model. Journal of Food Engineering, 76, 272–279.

    Article  Google Scholar 

  • Norton, T., & Sun, D. W. (2006). Computational fluid dynamics (CFD)—an effective design and analysis tool for the food industry: a review. Trends in Food Science and Technology, 17(11), 600–620.

    Article  CAS  Google Scholar 

  • Norton, T., & Sun, D. W. (2007). An overview of CFD applications in the food industry, chapter 1. In D.-W. Sun (Ed.), Computational fluid dynamics in food processing (pp. 1–43). Boca Raton: CRC Press.

    Google Scholar 

  • Norton, T., Sun, D. W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modeling and design of ventilation systems in the agricultural industry: a review. Bioresource Technology, 98(12), 2386–2414.

    Article  CAS  Google Scholar 

  • Oakley, D. E. (2004). Spray dryer modeling in theory and practice. Drying Technology, 22(6), 1371–1402.

    Article  Google Scholar 

  • Oliveira, L. S., & Haghighi, K. (1995). Conjugate/adaptive finite element analysis of convective drying problem. In In: Proceedings of the Ninth International Conference on Numerical Methods in Thermal Problems, 9 (pp. 80–88).

    Google Scholar 

  • Omolola, A. O., Jideani, A. I. O., & Kapila, P. F. (2014). Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety. International Journal of Agricultural and Biological Engineering, 7(6), 107–113.

    Google Scholar 

  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Khalini, H. (2016). Modeling the thin-layer drying of fruits and vegetables: a review. Comprehensive Reviews in Food Science and Food Safety, 15, 599–618.

    Article  Google Scholar 

  • Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. M.S. thesis. Department of Mechanical Engineering, Purdue University: West Lafayette.

  • Pai, M. G., & Subramaniam, S. (2006). Modeling interphase turbulent kinetic energy transfer in Lagrangian-Eulerian sprays computations, Atom Sprays. Journal of Fluid Mechanics, 16(7), 807–826.

    CAS  Google Scholar 

  • Pai, M. G., & Subramaniam, S. (2009). A comprehensive probability density function formalism for multiphase flows. Journal of Fluid Mechanics, 628, 181–228.

    Article  Google Scholar 

  • Pakowski, Z., & Adamski, R. (2011). On prediction of the drying rate in superheated steam drying process. Drying Technology, 29, 1492–1498.

    Article  CAS  Google Scholar 

  • Panyawong, S., & Devahastin, S. (2007). Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. Journal of Food Engineering, 78, 151–161.

    Article  Google Scholar 

  • Patel, K. C., Chen, X. D., Lin, S. X. Q., & Adhikari, B. A. (2009). Composite reaction engineering approach to drying of aqueous droplets containing sucrose, maltodextrin (DE6) and their mixtures. American Institute of Chemical Engineers Journal, 55(1), 217–231.

    Article  CAS  Google Scholar 

  • Perre, P. (2010). Multiscale modeling of drying as a powerful extension of the macroscopic approach: application to solid wood and biomass processing. Drying Technology, 28(8), 944–959.

    Article  CAS  Google Scholar 

  • Petitti, M., Barresi, A. A., & Marchisio, D. L. (2013). CFD modeling of condensers for freeze-drying processes. Sadhana: Academy Proceedings in Engineering Sciences, 38(6), 1219–1239.

    Article  CAS  Google Scholar 

  • Pujol, A., Debenest, G., Pommier, S., Quintard, M., & Chenu, D. (2011). Modeling composting processes with local equilibrium and local non-equilibrium approaches for water exchange terms. Drying Technology, 29(16), 1941–1953.

    Article  Google Scholar 

  • Putranto, A., & Chen, X. D. (2015). An assessment on modeling drying processes: equilibrium multiphase model and the spatial reaction engineering approach (S-REA). Chemical Engineering Research and Design, 94, 660–672.

    Article  CAS  Google Scholar 

  • Rajika, J. K. A. T., & Narayana, M. (2016). Modeling and simulation of wood chip combustion in a hot air generator system. Spring, 5, 1166. https://doi.org/10.1186/s40064-016-2817-x.

    Article  CAS  Google Scholar 

  • Ramachandran, R. P., Akbarzadeh, M., Paliwal, J., & Cenkowski, S. (2017a). Three-dimensional CFD modeling of superheated steam drying of a single distillers’ spent grain pellet. Journal of Food Engineering, 212, 121–135.

    Article  CAS  Google Scholar 

  • Ramachandran, R. P., Bourassa, J., Paliwal, J., & Cenkowski, S. (2017b). Effect of temperature and velocity of superheated steam on initial condensation of distillers’ spent grain pellets during drying. Drying Technology, 35(2), 182–192.

    Article  CAS  Google Scholar 

  • Ramachandran, R. P., Paliwal, J., & Cenkowski, S. (2017c). Thermo-physical properties of distillers’ spent grain pellets at different moisture content and condensed distillers’ solubles concentration. Food and Bioprocess Technology, 10, 175–185.

    Article  CAS  Google Scholar 

  • Ranjbaran, M., & Zare, D. (2012). CFD modeling of microwave-assisted fluidized bed drying of moist particles using two-fluid model. Drying Technology, 30(4), 362–376.

    Article  CAS  Google Scholar 

  • Ranjbaran, M., Emadi, B., & Zare, D. (2014). CFD simulation of deep-bed paddy drying process and performance. Drying Technology, 32(8), 919–934.

    Article  Google Scholar 

  • Rayaguru, K., & Routray, W. (2010). Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves. Journal of Food Science and Technology, 47(6), 668–673.

    Article  Google Scholar 

  • Richardson, L. F. (1910). The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London. Series A., 210, 307–357.

    Article  Google Scholar 

  • Rigit, A. R. H., & Low, P. T. K. (2010). Heat and mass transfer in a solar dryer with biomass backup burner. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 4(2), 133–136.

    Google Scholar 

  • Rizzi, A. C. Jr.‚ Passos, M. L., & Freire J. T. (2009). Modeling and simulating the drying of grass seeds (Brachiaria brizantha) in fluidized bed: evaluation of heat transfer coefficients. Brazilian Journal of Chemical Engineering, 26(3), 545–554.

    Article  CAS  Google Scholar 

  • Sabarez, H. T. (2012). Computational modeling of the transport phenomena occurring during convective drying of prunes. Journal of Food Engineering, 111(2), 279–288.

    Article  Google Scholar 

  • Sae-Heng, S., Swasdisevi, T., & Amornkitbamrung, M. (2011). Investigation of temperature distribution and heat transfer in fluidized bed using a combined CFD-DEM model. Drying Technology, 29(6), 697–708.

    Article  CAS  Google Scholar 

  • Salagnac, P., Glouannec, P., & Lecharpentier, D. (2004). Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwave heating. International Journal of Heat and Mass Transfer, 47, 4479–4489.

    Article  CAS  Google Scholar 

  • Saravacos, G. & Kostaropoulos, A. E. (2016) Handbook of food processing equipment. Food engineering series. 2nd ed. Springer.

  • Scott, G.M. (1994). Computational fluid dynamics for the food industry. Food Technology International Europe, 49–51.

  • Shahari, N., & Hibberd, S. (2014). Modeling of drying tropical fruits using multiphase model. World Scientific and Engineering Academy and Society (WSEAS) Transactions on Mathematics, 13, 840–851.

    Google Scholar 

  • Shahari, N., Hussein, S. M., Nursabrina, M., & Hibberd, S. (2014). Mathematical modeling of cucumber (cucumis sativus) drying. AIP Conference Proceedings, 1605, 307. https://doi.org/10.1063/1.4887607.

    Article  Google Scholar 

  • Shang, J. S. (2004). Three decades of accomplishments in computational fluid dynamics. Progress in Aerospace Sciences, 40, 173–197.

    Article  Google Scholar 

  • Shibata, H., & Ide, M. (2001). Combined superheated steam and microwave drying of sintered glass beads: drying rate curves. Drying Technology, 19(8), 2063–2079.

    Article  Google Scholar 

  • Shokouhmand, H., Abdollahi, V., Hosseini, S., & Vahidkhah, K. (2011). Performance optimization of a brick dryer using porous simulation approach. Drying Technology, 29, 360–370.

    Article  Google Scholar 

  • Shukla, A., Singh, A. K., & Singh, P. (2011). A comparative study of finite volume method and finite difference method for convective-diffusion problem. American Journal of Computational and Applied Mathematics, 1(2), 67–73.

    Article  Google Scholar 

  • Singh, P. P., Cushman, J. H., & Maier, D. E. (2003a). Three scale thermomechanical theory for swelling biopolymeric systems. Chemical Engineering Science, 58, 4017–4035.

    Article  CAS  Google Scholar 

  • Singh, P. P., Cushman, J. H., & Maier, D. E. (2003b). Multiscale fluid transport theory for swelling biopolymers. Chemical Engineering Science, 58, 2409–2419.

    Article  CAS  Google Scholar 

  • Smolka, J., Nowak, A. J., & Rybarz, D. (2010). Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations. Journal of Food Engineering, 97, 373–383.

    Article  Google Scholar 

  • St. George, S. D., & Cenkowski, S. (2009). Modeling of thin-layer drying on an inert sphere. Drying Technology, 27(6), 770–781.

    Article  CAS  Google Scholar 

  • Stone, L. E., Wypych, P. W., Hastie, D. B., & Zigan, S. (2016). CFD-DEM modeling of powder flows and dust generation mechanisms—a review. ICBMH 2016 - 12th International Conference on Bulk Materials Storage, Handling and Transportation, Proceedings, Barton, Australia: Engineers Australia, 417–426.

  • Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2007). A mathematical model for low pressure superheated steam drying of biomaterial. Chemical Engineering and Processing, 46(7), 675–683.

    Article  CAS  Google Scholar 

  • Szafran, R. G., & Kmiec, A. (2004). CFD modeling of heat and mass transfer in a spouted bed dryer. Industrial and Engineering Chemistry Research, 43, 1113–1124.

    Article  CAS  Google Scholar 

  • Taghinia, J., Rahman, M. M., & Siikonen, T. (2016). CFD study of turbulent jet impingement on curved surface. Chinese Journal of Chemical Engineering, 24, 588–596.

    Article  CAS  Google Scholar 

  • Taghipour, F., Ellis, N., & Wong, C. (2005). Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chemical Engineering Science, 60, 6857–6867.

    Article  CAS  Google Scholar 

  • Tatemoto, Y., & Sawada, T. (2012). Numerical analysis of drying characteristics of wet material immersed in fluidized bed of inert particles. Drying Technology, 30(9), 979–988.

    Article  Google Scholar 

  • Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying: a new model. Transactions of americal Society of Agricultural Engineer, 11(4), 582–586.

    Article  Google Scholar 

  • Thorvaldsson, K., & Janestad, H. (1999). A model for simulteneous heat, water and vapour diffusion. Journal of Food Engineering, 40, 167–172.

    Article  Google Scholar 

  • Trujillo, F. J., Lovatt, S. J., Harris, M. B., Willix, J., & Pham, Q. T. (2003). CFD modeling of the heat and mass transfer process during the evaporation of water from a circular cylinder. Third International Conference on CFD in the Minerals and Process ndustries, CSIRO, Melbourne, Australia 10-12 December 2003.

  • Ullum, T., Sloth, J., Brask, A., & Wahlberg, M. (2010). Predicting spray dryer deposits by CFD and an empirical drying model. Drying Technology, 28(5), 723–729.

    Article  Google Scholar 

  • Van Wachem, B., Schouten, J. C., Van den Bleek, C. M., Krishna, R., & Sinclair, J. L. R. (2001). Comparative analysis of CFD models of dense gas–solid systems. A.I.Ch.E. Journal, 47(5), 1035–1051.

    Google Scholar 

  • Velic, D., Planinic, M., Tomas, S., & Bilic, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64, 97–102.

    Article  Google Scholar 

  • Verboven, P., Nicolai, B., Scheerlinck, N., & De-Baerdemaeker, J. (1997). The local surface heat transfer coefficient in thermal food process calculations: a CFD approach. Journal of Food Engineering, 33, 15–35.

    Article  Google Scholar 

  • Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to computational fluid dynamics: the finite volume method. New York: Addison-Wesley, Longman.

    Google Scholar 

  • Vorhauer, N., Metzger, T., & Tsotsas, E. (2010). Empirical macroscopic model for drying of porous media based on pore networks and scaling theory. Drying Technology, 28, 991–1000.

    Article  Google Scholar 

  • Wang, N., & Brennan, J. (1992). Effect of water binding on the drying behaviour of potato. In A. S. Mujumdar (Ed.), Drying ‘92, Part B (pp. 1350–1359). Amsterdam: Elsevier Applied Science.

    Google Scholar 

  • Wang, Z., & Chen, G. H. (1999). Heat and mass transfer during intensity convection drying. Chemical Engineering Science, 54, 3899–3908.

    Article  CAS  Google Scholar 

  • Wang, C. Y., & Singh, R. P. (1978a). Use of variable equilibrium moisture content in modeling rice drying. Transactions of American Society of Agricultural Engineering, 11, 668–672.

    Google Scholar 

  • Wang C. Y. & Singh R. P. (1978b). A single layer drying equation for rough rice. ASAE Paper No. 78–3001, ASAE, St Joseph, MI.

  • Wang, L., & Sun, D.-W. (2003). Recent developments in numerical modeling of heating and cooling processes in the food industry—a review. Trends in Food Science and Technology, 14, 408–423.

    Article  CAS  Google Scholar 

  • Wang, Y., & Yan, L. (2008). CFD studies on biomass thermochemical conversion. International Journal of Molecular Sciences, 9, 1108–1130.

    Article  CAS  Google Scholar 

  • Warning, A. D., Arquiza, J. M. R., & Datta, A. S. (2015). A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying. Food and Bioproducts Processing, 94, 637–648.

    Article  Google Scholar 

  • Wawrzyniak, P., Podyma, M., Zbicinski, I., Bartczak, Z., & Rabaeva, J. (2012). Modeling of air flow in an industrial countercurrent spray-drying tower. Drying Technology, 30, 217–224.

    Article  Google Scholar 

  • Wilcox, D. C. (1994). Turbulence modeling for CFD. California: DCW Industries.

    Google Scholar 

  • Wu, Z. H., & Mujumdar, A. S. (2008). CFD modeling of the gas-particle flow behaviour in spouted beds. Powder Technology, 183, 260–272.

    Article  CAS  Google Scholar 

  • Xia, B., & Sun, D. W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34, 5–24.

    Article  Google Scholar 

  • Xiao, Z. F., Zhang, F., Wu, N. X., & Liu, X. D. (2013). CFD modeling and simulation of superheated steam fluidized bed drying process. International Federation for Information Processing AICT, 392, 141–149.

    Google Scholar 

  • Xu, P., Sasmito, A. P., Qiu, S., Mujumdar, A. S., Xu, L., & Geng, L. (2016). Heat transfer and entropy generation in air jet impingement on a model rough surface. International Communications in Heat and Mass Transfer, 72, 48–56.

    Article  Google Scholar 

  • Yahyaee, A. A., Esmailpour, K., Hosseinalipour, M., & Mujumdar, A. S. (2013). Simulation of drying characteristics of evaporation from a wet particle in a turbulent pulsed opposing jet contactor. Drying Technology, 31(16), 1994–2006.

    Article  CAS  Google Scholar 

  • Yamsaengsung, R., & Moreira, R. (2002). Modeling the transport phenomena and structural changes during deep fat frying part ii: model solution and validation. Journal of Food Engineering, 53, 11–25.

    Article  Google Scholar 

  • Yang, C. T., & Atluri, S. N. (1984). An assumed deviatoric stress-pressure-velocity mixed finite element method for unsteady, convective, incompressible viscous flow: part II: computational studies. International Journal for Numerical Methods in Fluids, 4, 43–69.

    Article  Google Scholar 

  • Yang, D., Wang, Z., Huang, X., Xiao, Z., & Liu, X. (2011). Numerical simulation on superheated steam fluidized bed drying: I. Model construction. Drying Technology, 29(11), 1325–1331.

    Article  CAS  Google Scholar 

  • Yi, T., Dye, J. C., Shircliff, M. E., & Ashrafzadeh, F. (2016). A new physics-based drying model of thin clothes in air-vented clothes dryers. IEEE/ASME Transactions on Mechatronics, 21(2), 872–878.

    Article  Google Scholar 

  • Yiotis, A. G., Stubos, A. K., Boudouvis, A. G., & Yortsos, Y. C. (2001). A 2D pore-network model of the drying of single component liquids in porous media. Advances in Water Resources, 24(3–4), 439–460.

    Article  CAS  Google Scholar 

  • Younsi, R., Kocaefe, D., Poncsak, S., Kocaefe, Y., & Gastonguay, L. (2008). CFD modeling and experimental validation of heat and mass transfer in wood poles subjected to high temperatures: a conjugate approach. Heat and Mass Transfer, 44, 1497–1509.

    Article  CAS  Google Scholar 

  • Yunus, Y. M., & Al-Kayiem, H. H. (2013). Simulation of hybrid solar dryer. IOP Conference Series: Earth and Environmental Science, 16, 012143. https://doi.org/10.1088/1755-1315/16/1/012143.

    Article  Google Scholar 

  • Zadin, V., Kasemagi, H., Valdna, V., Vigonski, S., Veske, M., & Aabloo, A. (2015). Application of multiphysics and multiscale simulations to optimize industrial wood drying kilns. Applied Mathematics and Computation, 267, 465–475.

    Article  Google Scholar 

  • Zhang, Z., & Chen, Q. (2007). Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric Environment, 41, 5236–5248.

    Article  CAS  Google Scholar 

  • Zhang, Z., & Kong, N. (2012). Nonequilibrium thermal dynamic modeling of porous medium vacuum drying process. Mathematical Problems in Engineering. https://doi.org/10.1155/2012/347598.

  • Zhang, A., Datta, A. K., & Mukherjee, S. (2005). Transport processes and large deformation during baking of bread. American Institute of Chemical Engineers Journal, 51(9), 2569–2580.

    Article  CAS  Google Scholar 

  • Zhi, T., Zeyuan, C., Jianqin, Z., & Haiwang, L. (2016). Effect of turbulence models on predicting heat transfer to hydrocarbon fuel at supercritical pressure. Chinese Journal of Aeronautics, 29(2), 1247–1261.

    Google Scholar 

  • Zhou, L. (2015). Two-phase turbulence models in Eulerian-Eulerian simulation of gas-particle flows and coal combustion. Procedia Engineering, 102, 1677–1696.

    Article  CAS  Google Scholar 

  • Zhou, H., Flamant, G., & Gauthier, D. (2004). DEM-LES of coal combustion in a bubbling fluidized bed 1: gas-particle turbulent flow structure. Chemical Engineering Science, 59(20), 4193–4203.

    Article  CAS  Google Scholar 

  • Zhu, H., Dhall, A., Mukherjee, S., & Datta, A. K. (2010). A model for flow and deformation in unsaturated swelling porous media. Transport in Porous Media, 84, 335–369.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada, Graduate Enhancement of Tri-Council Stipends, and University of Manitoba Graduate Fellowship for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Paliwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, R.P., Akbarzadeh, M., Paliwal, J. et al. Computational Fluid Dynamics in Drying Process Modelling—a Technical Review. Food Bioprocess Technol 11, 271–292 (2018). https://doi.org/10.1007/s11947-017-2040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2040-y

Keywords

Navigation