Skip to main content
Log in

Effect of Germination on the Functional and Moisture Sorption Properties of High–Pressure-Processed Foxtail Millet Grain Flour

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Foxtail millet is one of the commonly cultivated, nutritionally competitive source of protein, fibre, phytochemicals and other micronutrients, as compared to major cereals like wheat and rice. Considering the potential of these grains, the high pressure processed flours of germinated (GFMF) and non-germinated foxtail millet (NGFMF) grains were studied for its functional, moisture sorption and thermodynamic properties. Germination and high-pressure processing of foxtail millet grains significantly improved the functional properties of the flour. Apart from this, the moisture sorption isotherms of both the flours were determined at 10, 25 and 40 °C and the sorption data was fitted to Guggenheim-Anderson-De Boer (GAB) sorption model. The monolayer moisture content for NGFMF and GFMF ranged between 3.235–2.364 and 2.987–2.063 g g−1, respectively. The isosteric heat of sorption ranged between − 76.35 to − 38.23 kJ mol−1 for NGFMF and 172.55 to − 34.02 kJ mol−1 for GFMF at a moisture range of 0 to 36%, whereas, the integral entropy of sorption for NGFMF ranged between − 0.404 and − 0.120 kJ mol−1 K−1 and for GFMF between − 0.667 and − 0.383 kJ mol−1 K−1. Along with the validation of the compensation theory, the values of spreading pressures lied in the range of 0–0.078 J m−2 for NGFMF and 0– 0.124 J m−2 for GFMF, while, the glass transition temperatures ranged between 82.25 and 28.67 °C for NGFMF and from 51.11 to 11.83 °C for GFMF at all three temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abebe, W., & Ronda, F. (2015). Flowability, moisture sorption and thermal properties of tef [Eragrostis tef (Zucc.) Trotter] grain flours. Journal of Cereal Science, 63, 14–20.

    Article  CAS  Google Scholar 

  • ADMI. (1965). Standards for grades of dry milk including methods of analysis. USA: American Dry Milk Institute Bulletin.

    Google Scholar 

  • Aguerre, R. J., Suarez, C., & Viollaz, P. E. (1986). Enthalpy-entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms. Journal of Food Science., 51(6), 1547–1549.

    Article  CAS  Google Scholar 

  • Albarracín, M., Talens, P., Martínez-Navarrete, N., González, R. J., & Drago, S. R. (2016). Physicochemical properties and structural characteristics of whole grain Oryza sativa L. with different treatments. Food Science and Technology International, 22(4), 333–342.

    Article  Google Scholar 

  • Al-Mahasneh, M., Alkoaik, F., Khalil, A., Al-Mahasneh, A., El-Waziry, A., Fulleros, R., & Rababah, T. (2014). A generic method for determining moisture sorption isotherms of cereal grains and legumes using artificial neural networks. Journal of Food Process Engineering, 37, 308–316.

    Article  Google Scholar 

  • Alpizar-Reyes, E., Carrillo-Navas, H., Romero-Romero, R., Varela-Guerrero, V., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.) Food and Bioproducts Processing., 101, 166–176.

    Article  CAS  Google Scholar 

  • Arslan, N., & Togrul, H. (2006). The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. Journal of Stored Products Research, 42(2), 112–135.

    Article  CAS  Google Scholar 

  • Aviara, N. A., Ojediran, J. O., Marwan, S. U., & Raji, A. O. (2016). Effect of moisture sorption hysteresis on thermodynamic properties of two millet varieties. Agricultural Engineering International: CIGR Journal, 18(1), 363–383.

  • Ayala-Aponte, A. A. (2016). Thermodynamic properties of moisture sorption in cassava flour. Dyna, 83(197), 138–144.

    Article  Google Scholar 

  • Azuara, E., & Beristain, C. I. (2006). Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technology, 24(11), 1501–1507.

    Article  CAS  Google Scholar 

  • Barreiro, J. A., Fernández, S., & Sandoval, A. J. (2003). Water sorption characteristics of six row barley malt (Hordeum vulgare). LWT-Food Science and Technology, 36(1), 37–42.

    Article  CAS  Google Scholar 

  • Bell, L. N., & Labuza, T. P. (2000). Moisture sorption: practical aspects of isotherm measurement and use. St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Brett, B., Figueroa, M., Sandoval, A. J., Barreiro, J. A., & Müller, A. J. (2009). Moisture sorption characteristics of starchy products: oat flour and rice flour. Food Biophysics, 4(3), 151–157.

    Article  Google Scholar 

  • Chen, C. M., & Yeh, A. I. (2000). Expansion of rice pellets: examination of glass transition and expansion temperature. Journal of Cereal Science, 32(2), 137–145.

    Article  CAS  Google Scholar 

  • Chinma, C. E., Adewuyi, O., & Abu, J. O. (2009). Effect of germination on the chemical, functional and pasting properties of flour from brown and yellow varieties of tigernut (Cyperus esculentus). Food Research International, 42(8), 1004–1009.

    Article  CAS  Google Scholar 

  • Chuma, A., Ogawa, T., Kobayashi, T., & Adachi, S. (2012). Moisture sorption isotherm of durum wheat flour. Food Science and Technology Research, 18(5), 617–622.

    Article  CAS  Google Scholar 

  • Devisetti, R., Yadahally, S. N., & Bhattacharya, S. (2014). Nutrients and antinutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. LWT-Food Science and Technology, 59(2), 889–895.

    Article  CAS  Google Scholar 

  • Elkhalifa, A. E. O., & Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry, 121(2), 387–392.

    Article  CAS  Google Scholar 

  • Erbaş, M., Aykin, E., Arslan, S., & Durak, A. N. (2016). Adsorption behaviour of bulgur. Food Chemistry, 195, 87–90.

    Article  Google Scholar 

  • Estrada-Girón, Y., Swanson, B. G., & Barbosa-Cánovas, G. V. (2005). Advances in the use of high hydrostatic pressure for processing cereal grains and legumes. Trends in Food Science and Technology, 16, 194–203.

    Article  Google Scholar 

  • Fasina, O., Sokhansanj, S., & Tyler, R. (1997). Thermodynamics of moisture sorption in alfalfa pellets. Drying Technology, 15(5), 1553–1570.

    Article  Google Scholar 

  • Fasina, O. O., Ajibola, O. O., & Tyler, R. T. (1999). Thermodynamics of moisture sorption in winged bean seed and gari. Journal of Food Process Engineering, 22(6), 405–418.

    Article  Google Scholar 

  • Fontan, C. F., Chirife, J., Sancho, E., & Iglesias, H. A. (1982). Analysis of a model for water sorption phenomena in foods. Journal of Food Science, 47(5), 1590–1594.

    Article  Google Scholar 

  • Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, 81(1), 89–96.

    Article  Google Scholar 

  • Iglesias, H. A., Chirife, J., & Viollaz, P. (1976). Thermodynamics of water vapour sorption by sugar beet root. Journal of Food Technology, 11(1), 91–101.

    Article  CAS  Google Scholar 

  • Ikhu-Omoregbe, D. I. O., & Chen, X. D. (2005). Use of sorption isotherms for the estimation of shelf life of two Zimbabwean flours. Developments in Chemical Engineering and Mineral Processing, 13(1–2), 79–90.

    Google Scholar 

  • Jha, A., Patel, A. A., & Singh, R. R. B. (2002). Physico-chemical properties of instant kheer mix. Le Lait, 82(4), 501–513.

    Article  Google Scholar 

  • Katz, E. E., & Labuza, T. P. (1981). Effect of water activity on the sensory crispness and mechanical deformation of snack food products. Journal of Food Science, 46(2), 403–409.

    Article  Google Scholar 

  • Kaya, S., & Kahyaoglu, T. (2005). Thermodynamic properties and sorption equilibrium of pestil (grape leather). Journal of Food Engineering, 71(2), 200–207.

    Article  Google Scholar 

  • Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. The Journal of Physical Chemistry, 80(21), 2341–2351.

    Article  CAS  Google Scholar 

  • Labuza, T. P., & Altunakar, B. (2007). Water activity prediction and moisture sorption isotherms. Water activity in foods: fundamentals and applications, John Wiley & Sons, 1, 109–131.

    Article  Google Scholar 

  • Lagoudaki, M., & Demertzis, P. G. (1994). Equilibrium moisture characteristics of dehydrated food constituents as studied by a modified inverse gas chromatographic method. Journal of the Science of Food and Agriculture, 65(1), 101–109.

    Article  CAS  Google Scholar 

  • Lagoudaki, M., Demertzis, P. G., & Kontominas, M. G. (1993). Moisture adsorption behaviour of pasta products. LWT-Food Science and Technology, 26(6), 512–516.

    Article  Google Scholar 

  • Lakon, G. (1949). The topographical tetrazolium method for determining the germinating capacity of seeds. Plant Physiology, 24(3), 389.

    Article  CAS  Google Scholar 

  • Lang, K. W., McCune, T. D., & Steinberg, M. P. (1981). A proximity equilibration cell for rapid determination of sorption isotherms. Journal of Food Science, 46(3), 936–938.

    Article  CAS  Google Scholar 

  • Leffler, J. E., & Grunwald, E. (1963). Rates and equilibria of organic reactions: As treated by statistical, thermodynamic, and extrathermodynamic methods. New York: John Wiley & Sons, Dover Publications.

    Google Scholar 

  • Lewicki, P. P. (1997). The applicability of the GAB model to food water sorption isotherms. International journal of food science & technology, 32(6), 553–557.

    Article  CAS  Google Scholar 

  • Martín-Santos, J., Vioque, M., & Gómez, R. (2012). Thermodynamic properties of moisture adsorption of whole wheat flour. Calculation of net isosteric heat. International Journal of Food Science & Technology, 47(7), 1487–1495.

    Article  Google Scholar 

  • McMinn, W. A. M., & Magee, T. R. A. (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering, 60(2), 157–165.

    Article  Google Scholar 

  • Moreira, R., Chenlo, F., Torres, M. D., & Prieto, D. M. (2010). Water adsorption and desorption isotherms of chestnut and wheat flours. Industrial Crops and Products, 32(3), 252–257.

    Article  CAS  Google Scholar 

  • Muers, M. M., & House, T. U. (1962). A simple method for comparing wettability of instant spray dried separated milk powder. In Copenhagen, Denmark: XVI International Dairy Congress, 8, 299.

  • Ondier, G. O., Siebenmorgen, T. J., & Mauromoustakos, A. (2012). Equilibrium moisture contents of pureline, hybrid, and parboiled rice kernel fractions. Applied Engineering in Agriculture, 28(2), 237.

    Article  Google Scholar 

  • Pérez-Alonso, C., Beristain, C. I., Lobato-Calleros, C., Rodríguez-Huezo, M. E., & Vernon-Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, 77(4), 753–760.

    Article  Google Scholar 

  • Pollatos, E. P., Riganakos, K. A., & Demertzis, P. G. (2013). Moisture sorption characteristics of Greek durum wheat semolina. Starch-Stärke, 65(11–12), 1051–1060.

    Article  CAS  Google Scholar 

  • Pushpadass, H. A., Emerald, F., Chaturvedi, B., & Rao, K. J. (2014). Moisture sorption behavior and thermodynamic properties of gulabjamun mix. Journal of Food Processing and Preservation, 38(6), 2192–2200.

    Article  Google Scholar 

  • Rizvi, S. S. H. (1986). Thermodynamic properties of foods in dehydration. In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering properties of food (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Rizvi, S. S. H., & Benado, A. L. (1983). Thermodynamic analysis of drying foods. Drying Technology, 2(4), 471–502.

    Article  Google Scholar 

  • Sandoval, A. J., Nuñez, M., Müller, A. J., Della Valle, G., & Lourdin, D. (2009). Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydrate Polymers, 76(4), 528–534.

    Article  CAS  Google Scholar 

  • Sharma, N., & Niranjan, K. (2017). Foxtail millet: properties, processing, health benefits and uses. Food Reviews International. https://doi.org/10.1080/87559129.2017.1290103.

  • Sharma, S., Saxena, D. C., & Riar, C. S. (2015). Antioxidant activity, total phenolics, flavonoids and antinutritional characteristics of germinated foxtail millet (Setaria italica). Cogent Food & Agriculture, 1(1), 1081728.

    Google Scholar 

  • Simha, H. V., Pushpadass, H. A., Franklin, M. E. E., Kumar, P. A., & Manimala, K. (2016). Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties. Journal of Food Science and Technology, 53(6), 2705–2714.

    Article  CAS  Google Scholar 

  • Sjollema, A. (1963). Some investigations on the free-flowing properties and porosity of milk powders. Netherlands Milk and Dairy Journal, 17(3), 245–259.

    Google Scholar 

  • Sodipo, M. A., & Fashakin, J. B. (2011). Physicochemical properties of a complementary diet prepared from germinated maize, cowpea and pigeon pea. Journal of Food, Agriculture and Environment, 9(3–4), 23–25.

    CAS  Google Scholar 

  • VICH Steering Committee (2002). Testing of residual formaldehyde. VICH International Cooperation on Harmonization of Technical Registration of Veterinary Medical Products, 4–6.

  • Wu, F., Chen, H., Yang, N., Wang, J., Duan, X., Jin, Z., & Xu, X. (2013). Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. Journal of Cereal Science, 58(2), 263–271.

    Article  CAS  Google Scholar 

  • Yu, Y., Ge, L., Ramaswamy, H. S., Wang, C., Zhan, Y., & Zhu, S. (2016). Effect of high-pressure processing on moisture sorption properties of brown rice. Drying Technology, 34(7), 783–792.

    Article  Google Scholar 

  • Zhang, Q., Ge, L., Ramaswamy, H. S., Zhu, S., Yu, L., & Yu, Y. (2017a). Modeling equilibrium moisture content of Brown Rice as affected by high-pressure processing. Transactions of the ASABE, 60(2), 551–559.

    Article  Google Scholar 

  • Zhang, L., Li, J., Han, F., Ding, Z., & Fan, L. (2017b). Effects of different processing methods on the antioxidant activity of 6 cultivars of foxtail millet. Journal of Food Quality. https://doi.org/10.1155/2017/8372854.

Download references

Acknowledgements

Nitya Sharma gratefully acknowledges the support provided by the Commonwealth Scholarship Commission (INCN-2015-124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitya Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Goyal, S.K., Alam, T. et al. Effect of Germination on the Functional and Moisture Sorption Properties of High–Pressure-Processed Foxtail Millet Grain Flour. Food Bioprocess Technol 11, 209–222 (2018). https://doi.org/10.1007/s11947-017-2007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2007-z

Keywords

Navigation