Skip to main content
Log in

Chitosan Controls Postharvest Decay and Elicits Defense Response in Kiwifruit

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Chitosan is an eco-friendly alternative to synthetic fungicides for managing postharvest decay of fruits and vegetables. The ability of chitosan to enhance resistance to postharvest gray (Botrytis cinerea) and blue mold (Penicillium expansum) in kiwifruit was investigated. The gene expression and activity of antioxidant enzymes, and total phenolic compounds were determined. Results showed that chitosan at 5 g/L significantly inhibited gray and blue mold in kiwifruit stored at 25 and 4 °C. Chitosan significantly induced the gene expression of catalase, superoxide dismutase, and ascorbate peroxidase, as well as increased the enzyme activity. Moreover, chitosan markedly increased the content of total phenolic compounds in kiwifruit. Importantly, chitosan also exhibited beneficial effects on fruit quality. Taken together, the ability of chitosan to reduce mold in stored kiwifruit may be associated with the elicitation of host defense response. These results have practical implications for the application of chitosan to reduce postharvest losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alkan, N., & Fortes, A. M. (2015). Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Frontiers in Plant Science, 6, 889.

    Article  Google Scholar 

  • Almenar, E., Hernández-Muñoz, P., & Gavara, R. (2009). Evolution of selected volatiles in chitosan-coated strawberries (Fragaria × ananassa) during refrigerated storage. Journal of Agricultural and Food Chemistry, 57, 974–980.

    Article  CAS  Google Scholar 

  • Al-Qurashi, A. D., & Awad, M. A. (2015). Postharvest chitosan treatment affects quality, antioxidant capacity, antioxidant compounds and enzymes activities of ‘El-Bayadi’ table grapes after storage. Scientia Horticulturae, 197, 392–398.

    Article  CAS  Google Scholar 

  • Al-Qurashi, A. D., Awad, M. A., Mohamed, S. A., & Elsayed, M. I. (2017). Postharvest chitosan, trans-resveratrol and glycine betaine dipping affect quality, antioxidant compounds, free radical scavenging capacity and enzymes activities of ‘Sukkari’ bananas during shelf life. Scientia Horticulturae, 219, 173–181.

    Article  CAS  Google Scholar 

  • Awad, M. A., Al-Qurashi, A. D., El-Dengawy, E. R. F. A., & Elsayed, M. I. (2017). Quality and biochemical changes of ‘Hindi-Besennara’ mangoes during shelf life as affected by chitosan, trans-resveratrol and glycine betaine postharvest dipping. Scientia Horticulturae, 217, 156–163.

    Article  CAS  Google Scholar 

  • Bautista-Baños, S., Hernández-Lauzardo, A. N., Velázquez-del Valle, M. G., Hernández-López, M., Ait Barka, E., Bosquez-Molina, E., & Wilson, C. L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 25, 108–118.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Chen, H., Cheng, Z., Wisniewski, M., Liu, Y., & Liu, J. (2015). Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit. Environmental Science and Pollution Research, 22, 15037–15045.

    Article  CAS  Google Scholar 

  • de Oliveira, C. E., Magnani, M., de Sales, C. V., de Souza Pontes, A. L., Campos-Takaki, G. M., Stamford, T. C., & de Souza, E. L. (2014). Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage. Food Microbiology, 44, 211–219.

    Article  Google Scholar 

  • Dotto, G. L., Vieira, M. L. G., & Pinto, L. A. A. (2015). Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. LWT-Food Science and Technology, 64, 126–130.

    Article  CAS  Google Scholar 

  • Drummond, L. (2013). The composition and nutritional value of kiwifruit. Advances in Food and Nutrition Research, 68, 101–124.

    Article  Google Scholar 

  • Du, J., Gemma, H., & Iwahori, S. (1997). Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society for Horticultural Science, 66, 15–22.

    Article  CAS  Google Scholar 

  • El-Ghaouth, A., Smilanick, J. L., Brown, G. E., Ippolito, A., Wisniewski, M., & Wilson, C. L. (2000). Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruit under semi-commercial conditions. Plant Disease, 84, 243–248.

    Article  CAS  Google Scholar 

  • Eshghi, S., Mohammadi, A., Badii, F., Mohammadhoseini, Z., & Ahmadi, K. (2014). Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food and Bioprocess Technology, 7, 2397–2409.

    Article  CAS  Google Scholar 

  • Fatemi, H., Mohammadi, S., & Aminifard, M. H. (2013). Effect of postharvest salicylic acid treatment on fungal decay and some postharvest quality factors of kiwi fruit. Archives of Phytopathology & Plant Protection, 46, 1338–1345.

    Article  CAS  Google Scholar 

  • Feliziani, E., Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 132, 111–117.

    Article  CAS  Google Scholar 

  • Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., Zhang, X., Meng, M., Yu, J., Liu, J., Han, Y., Shi, W., Zhang, D., Cao, S., Wei, Z., Cui, Y., Xia, Y., Zeng, H., Bao, K., Lin, L., Min, Y., Zhang, H., Miao, M., Tang, X., Zhu, Y., Sui, Y., Li, G., Sun, H., Yue, J., Sun, J., Liu, F., Zhou, L., Lei, L., Zheng, X., Liu, M., Huang, L., Song, J., Xu, C., Li, J., Ye, K., Zhong, S., Lu, B. R., He, G., Xiao, F., Wang, H. L., Zheng, H., Fei, Z., & Liu, Y. (2013). Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 4, 2640.

    Google Scholar 

  • Kaya, M., Česonienė, L., Daubaras, R., Leskauskaitė, D., & Zabulionė, D. (2016). Chitosan coating of red kiwifruit (Actinidia melanandra) for extending of the shelf life. International Journal of Biological Macromolecules, 85, 355–360.

    Article  CAS  Google Scholar 

  • Kumari, P., Barman, K., Patel, V. B., Siddiqui, M. W., & Kole, B. (2015). Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan. Scientia Horticulturae, 197, 555–563.

    Article  CAS  Google Scholar 

  • Landi, L., Feliziani, E., & Romanazzi, G. (2014). Expression of defense genes in strawberry fruits treated with different resistance inducers. Journal of Agricultural and Food Chemistry, 62, 3047–3056.

    Article  CAS  Google Scholar 

  • Li, J., Yan, J., Wang, J., Zhao, Y., Cao, J., & Jiang, W. (2010). Effects of chitosan coating on oxidative stress in bruised Yali pears (Pyrus bretschneideri Rehd.) International Journal of Food Science & Technology, 45, 2149–2154.

    Article  CAS  Google Scholar 

  • Li, H., Wang, Y., Liu, F., Yang, Y., Wu, Z., Cai, H., Zhang, Q., & Wang, Y. (2015). Effects of chitosan on control of postharvest blue mold decay of apple fruit and the possible mechanisms involved. Scientia Horticulturae, 186, 77–83.

    Article  CAS  Google Scholar 

  • Liu, J., Tian, S. P., Meng, X. H., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44, 300–306.

    Article  CAS  Google Scholar 

  • Liu, Y., Wisniewski, M., Kennedy, K. F., Jiang, Y., Tang, J., & Liu, J. (2016). Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydrate Polymers, 151, 474–479.

    Article  CAS  Google Scholar 

  • Ma, Z., Yang, L., Yan, H., Kennedy, J. F., & Meng, X. (2013). Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydrate Polymers, 94, 272–277.

    Article  CAS  Google Scholar 

  • Mari, M., Spadoni, A., & Ceredi, G. (2015). Alternative technologies to control postharvest diseases of kiwifruit. Stewart Postharvest Review, 11, 4.

    Google Scholar 

  • Meng, X., Li, B., Liu, J., & Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry, 106, 501–508.

    Article  CAS  Google Scholar 

  • Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81, 70–75.

    Article  CAS  Google Scholar 

  • Michailides, T. J., & Elmer, P. A. G. (2000). Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Disease, 84, 208–223.

    Article  Google Scholar 

  • Neri, F., Donati, I., Veronesi, F., Mazzoni, D., & Mari, M. (2010). Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts. International Journal of Food Microbiology, 143, 109–117.

    Article  CAS  Google Scholar 

  • Pasquariello, M. S., Patre, D. D., Mastrobuoni, F., Zampella, L., Scortichini, M., & Petriccione, M. (2015). Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biology and Technology, 109, 45–56.

    Article  CAS  Google Scholar 

  • Perumal, A. B., Sellamuthu, P. S., Nambiar, R. B., & Sadiku, E. R. (2017). Effects of essential oil vapour treatment on the postharvest disease control and different defence responses in two mango (Mangifera indica L.) cultivars. Food and Bioprocess Technology, 10, 1131–1141.

    Article  CAS  Google Scholar 

  • Petriccione, M., De Sanctis, F., Pasquariello, M. S., Mastrobuoni, F., Rega, P., Scortichini, M., & Mencarelli, F. (2015a). The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food and Bioprocess Technology, 8, 394–408.

    Article  CAS  Google Scholar 

  • Petriccione, M., Pasquariello, M. S., Mastrobuoni, F., Zampella, L., Patre, D. D., & Scortichini, M. (2015b). Influence of a chitosan coating on the quality and nutraceutical traits of loquat fruit during postharvest life. Scientia Horticulturae, 197, 287–296.

    Article  CAS  Google Scholar 

  • Pichyangkura, R., & Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196, 49–65.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Karabulut, O. A., & Smilanick, J. L. (2007). Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 45, 134–140.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 75, 24–27.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Martínez, P. G., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57, 579–601.

    Article  CAS  Google Scholar 

  • Sellamuthu, P. S., Sivakumar, D., Soundy, P., & Korsten, L. (2013). Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biology and Technology, 81, 66–72.

    Article  CAS  Google Scholar 

  • Song, H., Yuan, W., Jin, P., Wang, W., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119, 41–48.

    Article  CAS  Google Scholar 

  • Takma, D. K., & Korel, F. (2017). Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food Chemistry, 221, 187–195.

    Article  Google Scholar 

  • Tang, W., Zheng, Y., Dong, J., Yu, J., Yue, J., Liu, F., Guo, X., Huang, S., Wisniewski, M., Sun, J., Niu, X., Ding, J., Liu, J., Fei, Z., & Liu, Y. (2016). Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis). Frontiers in Plant Science, 7, 335.

    Google Scholar 

  • Wang, C. W., Ai, J., Lv, H. Y., Qin, H. Y., Yang, Y. M., Liu, Y. X., & Fan, S. T. (2015). First report of Penicillium expansum causing postharvest decay on stored kiwifruit (Actinidia arguta) in China. Plant Disease, 99, 1037.

    Article  Google Scholar 

  • Wiilliamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561–580.

    Article  Google Scholar 

  • Xia, Y., Chen, T., Qin, G., Li, B., & Tian, S. (2016). Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit. Postharvest Biology and Technology, 111, 15–24.

    Article  CAS  Google Scholar 

  • Yang, Q., Rao, J., Yi, S., Meng, K., Wu, J., & Hou, Y. (2012). Antioxidant enzyme activity and chilling injury during low-temperature storage of kiwifruit cv. Hongyang exposed to gradual postharvest cooling. Horticulture, Environment, and Biotechnology, 53, 505–512.

    Article  CAS  Google Scholar 

  • Yu, T., Yu, C., Chen, F., Sheng, K., Zhou, T., Zunun, M., Abudu, O., Yang, S., & Zheng, X. (2012). Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biology and Technology, 69, 49–53.

    Article  CAS  Google Scholar 

  • Zhang, D., & Quantick, P. C. (1998). Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. Journal of Horticultural Science & Biotechnology, 73, 763–767.

    Article  CAS  Google Scholar 

  • Zhang, D., Wang, H., Hu, Y., & Liu, Y. (2015). Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway. Journal of Agricultural and Food Chemistry, 63, 7399–7404.

    Article  CAS  Google Scholar 

  • Zhu, Y., Yu, J., Brecht, J. K., Jiang, T., & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 537–543.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 31600128 and 31500131) and Innovation Team Project (LT2015011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongsheng Liu or Chunyu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Zheng, W., Li, L. et al. Chitosan Controls Postharvest Decay and Elicits Defense Response in Kiwifruit. Food Bioprocess Technol 10, 1937–1945 (2017). https://doi.org/10.1007/s11947-017-1957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1957-5

Keywords

Navigation