Skip to main content
Log in

Application of a Model Based on the Central Limit Theorem to Predict Growth of Pseudomonas spp. in Fish Meat

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The purpose of this research was to develop an alternative approach to construct a primary model to describe microbial growth. This method was based on the use of the Central Limit Theorem to provide a link between the physiological state of individual cells and the specific growth rate of the population. The resulting model included two parameters that are not usually found in classical models: a logarithmic inflection point, which is related to the exponential phase duration, and a new parameter, alpha, ranging from 0 to 1, which can provide a quantitative measurement of the physiological state of the cells. Once the model was constructed, it was applied to both isothermal and non-isothermal growth of Pseudomonas spp. in fish meat and compared to other models commonly used in the literature. The results showed that the model accurately matched the experimental data and that detailed knowledge of this new parameter can provide new insights into the underlying mechanisms that affect bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amézquita, A., Weller, C. L., Wang, L., Thippareddi, H., & Burson, D. E. (2005). Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham. International Journal of Food Microbiology, 101(2), 123–144.

    Article  Google Scholar 

  • Aspridou, Z., & Koutsoumanis, K. P. (2015). Individual cell heterogeneity as variability source in population dynamics of microbial inactivation. Food Microbiology, 45(Part B), 216–221.

    Article  Google Scholar 

  • Baranyi, J. (1998). Comparison of stochastic and deterministic concepts of bacterial lag. Journal of Theoretical Biology, 192(3), 403–408.

    Article  CAS  Google Scholar 

  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3–4), 277–294.

    Article  CAS  Google Scholar 

  • Baranyi, J., Roberts, T. A., & McClure, P. (1993). A non-autonomous differential equation to model bacterial growth. Food Microbiology, 10(1), 43–59.

    Article  Google Scholar 

  • Baty, F., & Delignette-Muller, M. L. (2004). Estimating the bacterial lag time: which model, which precision? International Journal of Food Microbiology, 91(3), 261–277.

    Article  Google Scholar 

  • Buchanan, R. L., & Cygnarowicz, M. L. (1990). A mathematical approach toward defining and calculating the duration of the lag phase. Food Microbiology, 7(3), 237–240.

    Article  Google Scholar 

  • Christov, S. G. (1992). Theory of proton transfer reactions in solution. Chemical Physics, 168(2–3), 327–339.

    Article  CAS  Google Scholar 

  • Corradini, M., & Peleg, M. (2005). Estimating non-isothermal bacterial growths in foods from isothermal experimental data. Journal of Applied Microbiology, 99(1), 187–200.

    Article  CAS  Google Scholar 

  • Frederickson, A. G., Ramkrishna, D., & Tsuhiya, H. M. (1967). Statistics and dynamics of procaryotic cell populations. Mathematical Biosciences, 1(3), 327–374.

    Article  Google Scholar 

  • Gibson, A. M., Bratchell, N., & Roberts, T. A. (1987). The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type a in pasteurized pork slurry. Journal of Applied Bacteriology, 62(6), 479–490.

    Article  CAS  Google Scholar 

  • Gram, L., & Dalgaard, P. (2002). Fish spoilage bacteria—problems and solutions. Current Opinion in Biotechnology, 13(3), 262–266.

    Article  CAS  Google Scholar 

  • Halter, M., Elliott, J. T., Hubbard, J. B., Tona, A., & Plant, A. L. (2009). Cell volume distributions reveal cell growth rates and division times. Journal of Theoretical Biology, 257(1), 124–130.

    Article  Google Scholar 

  • Koutsoumanis, K. P. (2001). Predictive modeling of shelf life of fish under nonisothermal conditions. Applied and Environmental Microbiology, 67(4), 1821–1829.

    Article  CAS  Google Scholar 

  • Koutsoumanis, K. P., Stamatiou, A., Skandamis, P., & Nychas, G. J. E. (2006). Development of a microbial model for combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Applied and Environmental Microbiology, 72(1), 124–134.

    Article  CAS  Google Scholar 

  • Kutalik, Z., Razaz, M., & Baranyi, J. (2005). Connection between stochastic and deterministic modelling of microbial growth. Journal of Theoretical Biology, 232(2), 285–299.

    Article  Google Scholar 

  • Malakar, P. K., & Barker, G. C. (2009). Estimating risk from small inocula by using population growth parameters. Applied and Environmental Microbiology, 75(19), 6399–6401.

    Article  CAS  Google Scholar 

  • McDonald, K., & Sun, D. W. (1999). Predictive food microbiology for the meat industry: a review. International Journal of Food Microbiology, 52(1–2), 1–27.

    Article  CAS  Google Scholar 

  • Nychas, G. J. E., Skandamis, P. N., Tassou, C. C., & Koutsoumanis, K. P. (2008). Meat spoilage during distribution. Meat Science, 78(1–2), 77–89.

    Article  Google Scholar 

  • Peleg, M., & Corradini, M. G. (2011). Microbial growth curves: what the models can tell us and what they cannot. Critical Reviews in Food Science and Nutrition, 51(10), 917–945.

    Article  Google Scholar 

  • Pérez-Rodríguez, F., & Zwietering, M. H. (2012). Application of the Central Limit Theorem in microbial risk assessment: high number of servings reduces the coefficient of variation of food-borne burden-of illness. International Journal of Food Microbiology, 153(3), 413–419.

    Article  Google Scholar 

  • Pin, C., & Baranyi, J. (2008). Single-cell and population lag times as a function of cell age. Applied and Environmental Microbiology, 74(8), 2534–2536.

    Article  CAS  Google Scholar 

  • Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149(1), 1–5.

    CAS  Google Scholar 

  • Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501–508.

    Article  CAS  Google Scholar 

  • Swinnen, I. A. M., Bernaerts, K., Dens, E. J., Geeraerd, A. H., & Van Impe, J. F. (2004). Predictive modelling of the microbial lag phase: a review. International Journal of Food Microbiology, 94(2), 137–159.

    Article  CAS  Google Scholar 

  • Van Impe, J. F., Nicolai, B. M., Martens, T., Baerdemaeker, J., & Vandewalle, J. (1992). Dynamic mathematical model to predict microbial growth and inactivation during food processing. Applied and Environmental Microbiology, 58(9), 2901–2909.

    Google Scholar 

  • Zwietering, M. H. (2002). Quantification of microbial quality and safety in minimally processed foods. International Dairy Journal, 12(2–3), 263–271.

    Article  Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881.

    CAS  Google Scholar 

  • Zwietering, M. H., Rombouts, F. M., & van’t Riet, K. (1992). Comparison of the definitions of the lag phase and the exponential phase in the bacterial growth. Journal of Applied Bacteriology, 72(2), 139–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weber da Silva Robazza.

Ethics declarations

Funding

The authors express their gratitude to the Brazilian National Council for Scientific and Technological Development/CNPq for financial support (Process 484037/2013).

Electronic supplementary material

ESM 1

(DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robazza, W.d., Teleken, J.T., Galvão, A.C. et al. Application of a Model Based on the Central Limit Theorem to Predict Growth of Pseudomonas spp. in Fish Meat. Food Bioprocess Technol 10, 1685–1694 (2017). https://doi.org/10.1007/s11947-017-1939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1939-7

Keywords

Navigation