Skip to main content
Log in

Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of microwaves (MWs) and/or ultrasound (US) to assist alkaline extraction of peanut proteins was evaluated. Isolate extraction yields and purities were obtained as well as functional properties (water solubility and retention, fat absorption, nitrogen solubility, emulsifying activity, and foam activity and stability), in vitro digestibility, free amino nitrogen (FAN), microstructure and secondary structure. In MW-assisted treatments, power (145, 290, 435, 580, and 725 W) and time (2, 4, 6, 8, and 10 min) were evaluated, whereas in US-assisted assays, amplitude (20/100%) and time (15/40 min) were varied. For MW-assisted extraction, 725 W and 8 min yielded an extraction of 55% (100% purity), i.e., 77% more protein when compared with the control, while for US, an increase of 136% and purity of 86% was reached (100% amplitude and 15 min). The sequential use of both technologies was also evaluated, but a synergistic effect in protein extraction was not observed. In terms of functional properties, fat absorption index remained the same for both treatments whereas water absorption, foam activity, emulsifying activity (for MW), and in vitro digestibility (for MW only) improved. In the case of free amino nitrogen, a reduction of 50% for assisted peanut protein isolates was observed. Microstructure was not different among treatments, but secondary structure did change: β-sheet and nonordered structures were higher for experimental treatments compared with the traditional alkaline isolate (up to 8 and 4%, respectively). The use of MW and US favored peanut protein extraction for production of high purity isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AACC:

American Association of Cereal Chemists

ANOVA:

Analysis of variance

AOAC:

Association of Official Analytical Chemists

CW:

Cell wall

EA:

Emulsifying activity

FA:

Foam activity

FAI:

Fat absorption index

FAN:

Free amino nitrogen

FAO:

Food and Agriculture Organization of the United Nations

FS:

Foam stability

FTIR:

Fourier transform infrared spectroscopy

MW:

Microwave

NSI:

Nitrogen solubility index

PB:

Protein body

SEM:

Scanning electron microscopy

US:

Ultrasound

WAI:

Water absorption index

WSI:

Water solubility index

References

  • AACC. (2000). Approved methods of the AACC. (A. A. Of & C. Chemists, Eds.) (10th ed.). St. Paul, MN.

  • Ahn, H. J., Kim, J. H., & Ng, P. K. W. (2005). Functional and thermal properties of wheat, barley, and soy flours and their blends treated with a microbial transglutaminase. Journal of Food Science, 70(6), c380–c386. doi:10.1111/j.1365-2621.2005.tb11433.x.

    Article  CAS  Google Scholar 

  • American Oil Chemist’s Society (AOCS). (2006). Official and tentative methods of the American Oil Chemist’s Society. (AOCS, Ed.). Urbana, IL, USA: AOCS.

  • AOAC. (1992). AOAC Official Methods. (A. International, Ed.). Washington, DC.

  • Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: a review. Food Research International, 48(2), 410–427. doi:10.1016/j.foodres.2012.05.004.

    Article  CAS  Google Scholar 

  • Beuchat, L. R., Cherry, J. P., & Quinn, M. R. (1975). Physicochemical properties of peanut flour as affected by proteolysis. Journal of Agricultural and Food Chemistry, 23(4), 616–620. doi:10.1021/jf60200a045.

    Article  CAS  Google Scholar 

  • Bylund, G. (2015). Dairy processing handbook (Third Edit.). Lund Sweden: Tetra Pak Processing Systems AB.

  • Caballero de la Peña, K. (2015). Análisis del valor nutrimental de una bebida a base de pulpa de fruta suplementada con proteína vegetal in vitro y en un modelo murino. Tesis de Maestría en Biotecnología. Tecnologico de Monterrey.

  • Cheewapramong, P., Riaz, M. N., Rooney, L. W., & Lusas, E. W. (2002). Use of partially defatted peanut flour in breakfast cereal flakes. Cereal Chemistry, 79(4), 586–592. doi:10.1094/CCHEM.2002.79.4.586.

    Article  CAS  Google Scholar 

  • Cheftel, J. ., Cuq, J. ., & Lorient, D. (1989). Propiedades Funcionales de las Proteínas. In Proteínas Alimentarias. España: Acribia.

  • Chel-Guerrero, L., Corzo-Ríos, L., & Betancur-Ancona, D. (2003). Estructura y propiedades funcionales de proteínas de leguminosas. Revista de la Universidad Autónoma de Yucatán, 227, 34–43.

    Google Scholar 

  • Choi, I., Cho, S. J., Chun, J. K., & Moon, T. W. (2006). Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. Journal of Food Processing and Preservation, 30(4), 407–419. doi:10.1111/j.1745-4549.2006.00075.x.

    Article  CAS  Google Scholar 

  • Colombo, A., Ribotta, P. D., & León, A. E. (2010). Differential scanning calorimetry (DSC) studies on the thermal properties of peanut proteins. Journal of Agricultural and Food Chemistry, 58(7), 4434–4439. doi:10.1021/jf903426f.

    Article  CAS  Google Scholar 

  • Cvetanović, A., Švarc-Gajić, J., Mašković, P., Savić, S., & Nikolić, L. (2015). Antioxidant and biological activity of chamomile extracts obtained by different techniques: perspective of using superheated water for isolation of biologically active compounds. Industrial Crops and Products, 65, 582–591. doi:10.1016/j.indcrop.2014.09.044.

    Article  Google Scholar 

  • Desai, B. B., Kotecha, P. M., & Salunkhe, D. K. (1999). Composition and nutritional quality. In Introduction science and technology of groundnut: biology, production, processing and utilization (pp. 185–199). New Delhi: Naya Prokash Publ.

    Google Scholar 

  • Desai, M., Parikh, J., & Parikh, P. (2010). Extraction of natural products using microwaves as a heat source. Separation & Purification Reviews, 39(1–2), 1–32. doi:10.1080/15422111003662320.

    Article  Google Scholar 

  • Deshpande, S. S., & Damodaran, S. (1989). Structure-digestibility relationship of legume 7S proteins. Journal of Food Science, 54(1), 108–113. doi:10.1111/j.1365-2621.1989.tb08579.x.

    Article  CAS  Google Scholar 

  • Fang, Y., Rogers, S., Selomulya, C., & Chen, X. D. (2012). Functionality of milk protein concentrate: effect of spray drying temperature. Biochemical Engineering Journal, 62, 101–105. doi:10.1016/j.bej.2011.05.007.

    Article  CAS  Google Scholar 

  • Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2007). Comparison of different isolation methods of essential oil fromCitrus fruits: cold pressing, hydrodistillation and microwave “dry” distillation. Flavour and Fragrance Journal, 22(6), 494–504. doi:10.1002/ffj.1829.

    Article  CAS  Google Scholar 

  • Ferreyra, J. C., Kuskoski, E. M., Bordignon, M. T., Barrera, D., & Fett, R. (2007). Propiedades emulsificantes y espumantes de las proteínas de harina de cacahuate ( Arachis hypogaea Lineau ). Grasas y Aceites, 58(3), 264–269.

    Article  CAS  Google Scholar 

  • Gallegos-Hoyos, F. (2016). Informe de la evaluación técnica y comercial de tecnología para incrementar rendimientos en la elaboración de aislados de proteínas vegetales. Oficina de Transferencia de Tecnología. Tecnológico de Monterey. Monterrey, N.L. México.

  • Garidel, P., & Schott, H. (2006). Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations part 2: details analysis and applications. Bioprocess International, 1, 48–55.

    Google Scholar 

  • Haque, Z., & Kito, M. (1983). Lipophilization of .alpha.s1-casein. 2. Conformational and functional effects. Journal of Agricultural and Food Chemistry, 31(6), 1231–1237. doi:10.1021/jf00120a022.

    Article  CAS  Google Scholar 

  • Hervera, M., Baucells, M. D., González, G., Pérez, E., & Castrillo, C. (2009). Prediction of digestible protein content of dry extruded dog foods: comparison of methods. Journal of Animal Physiology and Animal Nutrition, 93(3), 366–372. doi:10.1111/j.1439-0396.2008.00870.x.

    Article  CAS  Google Scholar 

  • Hsu, H. W., Vavak, D. L., Satterlee, L. D., & Miller, G. A. (1977). A multienzyme technique for estimating protein digestibility. Journal of Food Science, 42(5), 1269–1273. doi:10.1111/j.1365-2621.1977.tb14476.x.

    Article  CAS  Google Scholar 

  • Jideani, V. a. (2011). Functional properties of soybean food ingredients in food systems (pp. 345–364). Chemistry and Physiology: Soybean - Biochemistry. doi:10.5772/1952.

    Google Scholar 

  • Johnson, L. A., Farnsworth, J. T., Garland, R. J., & Lusas, E. W. (1979). Removal of raw peanut flavor and odor in peanut flour processed by direct solvent extraction. Peanut Science, 6(1), 43–45. doi:10.3146/i0095-3679-6-1-8.

    Article  CAS  Google Scholar 

  • Kain, R. J., Chen, Z., Sonda, T. S., & Abu-Kpawoh, J. (2009). Study on the effect of control variables on the extraction of peanut protein isolates from peanut meal (Arachis hypogaea L.). American Journal of Food Technology, 4, 47–55.

    Article  CAS  Google Scholar 

  • Karki, B. (2009). Use of high-power ultrasound during soy protein production and study of its effect on functional properties of soy protein isolate. PhD Dissertation. Graduate Theses and Dissertations. Paper 11055. Iowa State University.

  • Karki, B., Lamsal, B., Grewell, D., Pometto, A. L., Van Leeuwen, J., Khanal, S. K., & Jung, S. (2009). Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. JAOCS, Journal of the American Oil Chemists’ Society, 86(10), 1021–1028. doi:10.1007/s11746-009-1433-0.

    Article  CAS  Google Scholar 

  • Kinsella, J. E. (1979). Functional properties of soy proteins. Journal of the American Oil Chemists’ Society, 56(3), 242–258. doi:10.1007/BF02671468.

    Article  CAS  Google Scholar 

  • Lam, R. S. H., & Nickerson, M. T. (2013). Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chemistry, 141(2), 975–984. doi:10.1016/j.foodchem.2013.04.038.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhao, G., Ren, J., Zhao, M., & Yang, B. (2011). Effect of denaturation during extraction on the conformational and functional properties of peanut protein isolate. Innovative Food Science & Emerging Technologies, 12(3), 375–380. doi:10.1016/j.ifset.2011.01.012.

    Article  CAS  Google Scholar 

  • Lupano, C. E. (2013). Modificaciones de componentes de los alimentos: cambios químicos y bioquímicos por procesamiento y almacenamiento. Editorial de la Universidad de la Plata.

  • Padilla, F. C., Guédez, T., Alfaro, M. J., Regnault, M., & Rincón, A. M. (2010). Fraccionamiento y caracterización de las proteínas solubles de la harina de nuez de Barinas (Caryodendron orinocense K.). Revista del Instituto Nacional de Higiene Rafael Rangel, 41(1), 38–42 Accessed 10 March 2016.

    Google Scholar 

  • Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42(2), 129–133. doi:10.1016/S0255-2701(02)00037-5.

    Article  CAS  Google Scholar 

  • Porzucek, H., Larsson-Raznikiewicz, M., & Klepacka, M. (1991). In vitro protein digestibility of flours and protein isolates from seeds of some leguminous plants. tp://agris.fao.org/agrissearch/

  • Rafiee, Z., Jafari, S., Alami, M., & Khomeiri, M. (2011). Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. The Journal of Animal & Plant Sciences, 4(21), 738–745.

    Google Scholar 

  • Raso, J., Mañas, P., Pagán, R., & Sala, F. J. (1999). Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 5(4), 157–162. doi:10.1016/S1350-4177(98)00042-X.

    Article  CAS  Google Scholar 

  • Salinas-Valdés, A., De la Rosa Millán, J., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2015). Yield and textural characteristics of panela cheeses produced with dairy-vegetable protein (soybean or peanut) blends supplemented with transglutaminase. Journal of Food Science, 80(12), s2950–s2956. doi:10.1111/1750-3841.13126.

    Article  Google Scholar 

  • Singh, U., & Singh, B. (1991). Functional properties of sorghum-peanut composite flour. Cereal Chemistry, 68(5), 460–463.

    Google Scholar 

  • Sorgentini, D. A., Wagner, J. R., & Anon, M. C. (1995). Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. Journal of Agricultural and Food Chemistry, 43(9), 2471–2479. doi:10.1021/jf00057a029.

    Article  CAS  Google Scholar 

  • Soria-Hernández, C., Serna-Saldívar, S., & Chuck-Hernández, C. (2015). Physicochemical and functional properties of vegetable and cereal proteins as potential sources of novel food ingredients. Food Technology and Biotechnology, 53(3), 269–277. doi:10.17113/ftb.53.03.15.3920.

    Google Scholar 

  • Vanga, S. K., Singh, A., Kalkan, F., Gariepy, Y., Orsat, V., & Raghavan, V. (2015). Effect of thermal and high electric fields on secondary structure of peanut protein. International Journal of Food Properties, 19(6), 1259–1271. doi:10.1080/10942912.2015.1071841.

    Article  Google Scholar 

  • Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Science & Emerging Technologies, 9(2), 161–169. doi:10.1016/j.ifset.2007.04.014.

    Article  CAS  Google Scholar 

  • Whisstock, J. C., & Lesk, A. M. (2003). Prediction of protein function from protein sequence and structure. Quarterly Reviews of Biophysics, 36(03), 307–340.

    Article  CAS  Google Scholar 

  • Wu, H., Wang, Q., Ma, T., & Ren, J. (2009). Comparative studies on the functional properties of various protein concentrate preparations of peanut protein. Food Research International, 42(3), 343–348. doi:10.1016/j.foodres.2008.12.006.

    Article  CAS  Google Scholar 

  • Yu, J., Ahmedna, M., & Goktepe, I. (2007). Peanut protein concentrate: production and functional properties as affected by processing. Food Chemistry, 103(1), 121–129. doi:10.1016/j.foodchem.2006.08.012.

    Article  CAS  Google Scholar 

  • Zhang, H., Tang, L., & Yang, Q. (2011). Optimization of the ultrasonic wave-assisted extraction condition of peanut protein isolate. Advanced Materials Research, 189-193, 3904–3911. doi:10.4028/www.scientific.net/AMR.189-193.3904.

    Article  CAS  Google Scholar 

  • Zhang, Q., Tu, Z., Xiao, H., Wang, H., Huang, X., Liu, G., et al. (2014). Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 92(1), 30–37. doi:10.1016/j.fbp.2013.07.006.

    Article  CAS  Google Scholar 

  • Zhao, G., Liu, Y., Ren, J., Zhao, M., & Yang, B. (2013). Effect of protease pretreatment on the functional properties of protein concentrate from defatted peanut flour. Journal of Food Process Engineering, 36(1), 9–17. doi:10.1111/j.1745-4530.2011.00646.x.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nutriomics Research Group (School of Engineering and Sciences, Tecnologico de Monterrey-Campus Monterrey) and to the kind support of Consejo Nacional De Ciencia y Tecnología (CONACyT, Scientific Development Projects to Solve National Problems 2013). We express our gratitude to CONACyT and Tecnologico de Monterrey for Ariana Ochoa’s postgraduate scholarship and to the Center for Research and Protein Development’s staff (CIDPRO) for your kind and warm support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Chuck-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S.O. et al. Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates. Food Bioprocess Technol 10, 543–555 (2017). https://doi.org/10.1007/s11947-016-1838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1838-3

Keywords

Navigation