Skip to main content
Log in

A Viscoelastic Model for Honeys Using the Time–Temperature Superposition Principle (TTSP)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The viscoelastic parameters storage modulus (G′) and loss modulus (G″) were measured at different temperatures (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, and 40 °C) using oscillatory thermal analysis in order to obtain a viscoelastic model for honey. The model (a 4th grade polynomial equation) ascertains the applicability of the time–temperature superposition principle (TTSP) to the dynamic viscoelastic properties. This model, with a regression coefficient higher than 0.99, is suitable for all honeys irrespective their botanical origin (monofloral, polyfloral, or honeydew). The activation energy (relaxation“ΔH a” and retardation “ΔH b”), and the relaxation modulus fit the model proposed. The relaxation modulus has a 4th grade polynomial equation evolution at all temperatures. The moisture content influences all the rheological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  • Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38.

    Article  Google Scholar 

  • Aguilar, C., Rizva, S. S. H., Ramirez, J. F., & Inda, A. (1991). Rheological behavior of processed mustard. I: Effect of milling treatment. Journal of Texture Studies, 22, 59–84.

    Article  Google Scholar 

  • Ahmed, J., & Ramaswamy, H. (2006). Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 74(3), 376–382.

    Article  Google Scholar 

  • Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68.

    Article  Google Scholar 

  • Bogdanov S. (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland.

  • Bueche, F. (1952). Viscosity self-diffusion and allied effect in solid polymers. Journal of Chemical Physics, 20, 1959–1964.

    Article  CAS  Google Scholar 

  • Castro-Vázquez, L., Díaz-Maroto, M. C., Torres, C., & Pérez-Coello, M. S. (2010). Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43(10), 2335–2340.

    Article  Google Scholar 

  • Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527.

    Article  Google Scholar 

  • Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14.

    Article  CAS  Google Scholar 

  • Dealy, J., & Plazek, D. (2009). Time-temperature superposition – a users guide. Rheological Bulletin, 78(2), 16–31.

    Google Scholar 

  • Doi, M., & Edwards. (1986). The theory of polymer dynamics, chap. 7. Oxford: Clarendon.

    Google Scholar 

  • Doublier, J. L., & Cuvelier, G. (1996). Gums and hydrocolloids: functional aspect. In A. C. Eliasson (Ed.), Carbohydrates in Food (pp. 283–318). New York: Marcel Dekker Inc.

    Google Scholar 

  • Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313.

    Article  CAS  Google Scholar 

  • Friedrich, C. (1991a). Relaxation and retardation functions of Maxwell model with fractional derivates. Rheological Acta, 30, 151–158.

    Article  CAS  Google Scholar 

  • Friedrich, C. (1991b). Relaxation functions of rheological constitutive equations with fractional derivates: thermodynamical constraints. In J. Casa-Vásquez & D. Jou (Eds.), Lectures Nodes in Physics, Rheological Modelling: Thermodynamical and Statistical Approaches, vol. 381 (pp. 321–330). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Glöcke, W. G., & Nonnenmacher, T. F. (1994). Fractional relaxation and the time-temperature superposition principle. Rheological Acta, 33, 337–343.

    Article  Google Scholar 

  • Gomez-Diaz, D., Navaza, J. M., & Quintans-Riveiro, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404.

    Article  Google Scholar 

  • Guedes, R. M. (2011). A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polymer Testing, 30(3), 294–302.

    Article  CAS  Google Scholar 

  • Heymans, H. (2003). Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition. Signal Processing, 83, 2345–2357.

    Article  Google Scholar 

  • Heymans, N., & Bauwens, J. C. (1994). Fractal rheolgical models and fractional differential equations for viscoelastical behavior. Rheological Acta, 33, 210–219.

    Article  CAS  Google Scholar 

  • Hong, S. I., Kim, Y. S., Choi, D. W., & Pyun, Y. R. (1992). Compressive creep behavior of rice starch gel. Korean Journal of Food Science & Technology, 24, 165–170.

    Google Scholar 

  • Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168.

    Article  Google Scholar 

  • Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49.

    Article  Google Scholar 

  • Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94.

    Google Scholar 

  • Katsuta, K., & Kinsella, J. E. (1990). Effects of temperature on viscoelastic properties and activation energies of whey protein gels. Journal of Food Science, 55(5), 1296–1302.

    Article  CAS  Google Scholar 

  • Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117.

    Article  Google Scholar 

  • Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21.

    Article  Google Scholar 

  • Lizarraga, M. S., Piante Vicin, D., González, R., Rubiolo, A., & Santiago, L. G. (2006). Rheological behaviour of whey protein concentrate and λ-carrageenan aqueous mixtures. Food Hydrocolloids, 20, 740–748.

    Article  CAS  Google Scholar 

  • Lusby, P., Coombes, A., & Wilkinson, J. (2005). Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Researchm, 36(5), 464–467.

    Article  CAS  Google Scholar 

  • Menjivar, J. A., & Faridi, H. (1994). Rheological properties of cookie and cracker doughs. In H. Faridi (Ed.), The Science of Cookie and Craker Production (pp. 283–322). New York: Chapman & Hall.

    Google Scholar 

  • Morris, E. R. (1989). Polysaccharide solution properties: origin, rheological characterization and implications for food systems. In R. P. Millan, J. N. BeMiller, & R. Chandrasekavan (Eds.), Frontiers in Carbohydrate Research – 1: Food Aplication (pp. 132–163). New York: Elsevier Applied Science Pub.

    Google Scholar 

  • Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552.

    CAS  Google Scholar 

  • Oroian, M., Amariei, S., Escriche, I., & Gutt, G. (2011). Rheological aspects of Spanish honeys. Food and Bioprocess Technology. doi:10.1007/s11947-011-0730-4.

  • Ozdemir, C., Dagdemir, E., Ozdemir, S., & Sagdic, O. (2009). The effects of using alternative sweeteners to sucrose on ice cream quality. Journal of Food Quality, 31(4), 415–428.

    Article  Google Scholar 

  • Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23, 415–425.

    Article  Google Scholar 

  • Robson, V., Yorke, J., Sen, R., Lowe, D., & Rogers, S. (2011). Randomised controlled feasibility trial on the use of medical grade honey following microvascular free tissue transfer to reduce the incidence of wound infection. British Journal of Oral and Maxillofacial Surgery. doi:10.1016/j.bjoms.2011.07.014.

  • Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280.

    Article  CAS  Google Scholar 

  • Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: Características e identificación mediante el análisis del polen. Madrid: Mundi-Prensa Publishing.

    Google Scholar 

  • Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113.

    Article  Google Scholar 

  • Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75.

    Article  Google Scholar 

  • Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309.

    Article  Google Scholar 

  • Stomfay-Stitz, J. (1960). Honey: an ancient yet modern medicine. The Science Counsellor, 23, 110–125.

    Google Scholar 

  • Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3706.

    Article  CAS  Google Scholar 

  • Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537.

    Article  Google Scholar 

  • Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377.

    Article  Google Scholar 

  • Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463.

    Article  Google Scholar 

  • Yoon, W. B., Park, J. W., Kim, B. Y., & Kim, M. H. (1998). Dynamic properties of surimi-based seafood product as a function of moisture content. Food Engineering Progress, 2, 23–29.

    Google Scholar 

  • Zumla, A., & Lulat, A. (1989). Honey—a remedy rediscovered. Journal of the Royal Society of Medicine, 82, 384–385.

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the project “Knowledge provocation and development through doctoral research PRO-DOCT—Contract no. POSDRU/88/1.5/S/52946,” project co-funded from European Social Fund through Sectorial Operational Program Human Resources 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Oroian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oroian, M., Amariei, S., Escriche, I. et al. A Viscoelastic Model for Honeys Using the Time–Temperature Superposition Principle (TTSP). Food Bioprocess Technol 6, 2251–2260 (2013). https://doi.org/10.1007/s11947-012-0893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0893-7

Keywords

Navigation