Skip to main content
Log in

A Kinetic Study on the Heat-Induced Changes of Whey Proteins Concentrate at Two pH Values

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Whey protein concentrate (WPC) is used as food ingredients due to their commercially important functional properties. The effects of heat treatment on the components of milk are very important for the final product character, since they undergo modifications that affect sensorial and nutritional quality of milk. The heat-induced changes on dispersions of whey proteins concentrate were monitored by measurement of thiol availability, protein solubility, and turbidity at pH 6.6 and 7.5. The fractional conversion model was used to quantitatively describe the effect of different temperature–time combination on denaturation mechanism. The results demonstrate that heat-induced changes of WPC greatly influence their solubility, expressed as degree of denaturation at pH 4.6 and were related to the heating conditions. The denaturation mechanism involved a number of consecutive conformational changes in the molecules. A curvature in Arrhenius plots was observed around 75 °C, indicating changes in the reaction mechanism. The deflection of Arrhenius plot reflects the generally accepted two-step denaturation/aggregation process of whey proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alting, A. C., Hamer, R. J., De Kruif, C. G., & Visschers, R. W. (2000). Formation of disulfide bonds in acid-induced gels of preheated whey protein isolate. Journal of Agricultural and Food Chemistry, 48, 5001–5007.

    Article  CAS  Google Scholar 

  • Alting, A. C., Weijers, M., de Hoog, E. H., van de Pijpekamp, A. M., Cohen Stuart, M. A., Hamer, R. J., et al. (2004). Acid-induced cold gelation of globular proteins: effects of protein aggregate characteristics and disulfide bonding on rheological properties. Journal of Agricultural and Food Chemistry, 52, 623–631.

    Article  CAS  Google Scholar 

  • Anema, S. G., & McKenna, A. (1996). Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. Journal of Agricultural and Food Chemistry, 44, 422–428.

    Article  CAS  Google Scholar 

  • Beveridge, T., Toma, S. J., & Nakai, S. (1974). Determination of SH and SS-groups in some food proteins using Ellman’s reagent. Journal of Food Science, 39, 49–51.

    Article  CAS  Google Scholar 

  • Boye, J. I., & Alli, I. (2000). Thermal denaturation of mixtures of α-lactalbumin and β-lactoglobulin: a differential scanning calorimetric study. Food Research International, 33(8), 673–682.

    Article  CAS  Google Scholar 

  • Brunner, J. R. (1977). Milk Proteins. In J. R. Whitaker & S. R. Tannenbaum (Eds.), Food Proteins (pp 175–208). Wesport: AVI.

    Google Scholar 

  • Cecil, R. (1963). Intramolecular bonds in proteins: The role of sulfur in proteins. In H. Neurath (Ed.), The proteins, composition, structure, and function ((pp, Vol. 1, pp. 379–476). New York: Academic.

    Google Scholar 

  • Claeys, W. (2003). Intrinsic time temperature integrators for thermal and high pressure processing of milk. PhD Thesis. Katholieke Universiteit Leuven. Belgium.

  • Creighton, T. E. (1984). Proteins: Structure and molecular properties. New York: Freeman.

    Google Scholar 

  • Croguennec, T., Bouhallab, S., Mollé, D., O’Kennedy, B. T., & Mehra, R. (2003). Stable monomeric intermediate with exposed Cys119 is formed during heat denaturation of β-lactoglobulin. Biochemical and Biophysical Research Communications, 301, 465–471.

    Article  CAS  Google Scholar 

  • Croguennec, T., O’Kennedy, B. T., & Mehra, R. (2004). Heat-induced denaturation/aggregation of β-lactoglobulin A and B: Kinetics of the first intermediates formed. International Dairy Journal, 14, 399–409.

    Article  CAS  Google Scholar 

  • Dalgleish, D. G., Senaratne, V., & François, S. (1997). Interactions between α-lactalbumin and β-lactoglobulin in the early stages of heat denaturation. Journal of Agricultural and Food Chemistry, 45, 3459–3464.

    Article  CAS  Google Scholar 

  • Dannenberg, F., & Kessler, H. G. (1988). Thermodynamic approach to kinetics of β-lactoglobulin denaturation in heated milk and sweet whey. Milchwissenschaft, 43, 139–142.

    CAS  Google Scholar 

  • De la Fuente, M. A., Singh, H., & Hemar, Y. (2002). Recent advances in the characterization of heat-induced aggregates and intermediates of whey proteins. Trends in Food Science and Technology, 13, 262–274.

    Article  Google Scholar 

  • De Wit, J. N. (1990). Thermal stability and functionality of whey proteins. Journal of Dairy Science, 73, 3602–3612.

    Article  Google Scholar 

  • De Wit, J. N. (2009). Thermal behavior of bovine β-lactoglobulin at temperatures up to 1500 C. a review. Trends in Food Science and Technology, 20, 27–34.

    Article  Google Scholar 

  • De Wit, J. N., & Klarenbeek, G. (1984). Effects of various heat treatments on structure and solubility of whey proteins. Journal of Dairy Science, 67, 2701–2710.

    Article  Google Scholar 

  • De Wit, R., & Nieuwenhuijse, H. (2008). Kinetic modeling of the formation of sulfur-containing flavor components during heat-treatment of milk. International Dairy Journal, 18, 539–547.

    Article  Google Scholar 

  • Doi, E. (1993). Gels and gelling of globular proteins. Trends in Food Science and Technology, 4, 1–5.

    Article  CAS  Google Scholar 

  • Grácia-Juliá, A., René, M., Cortés-Muňoz, M., Picart, L., Lŏpez-Pedemonte, T., Chevalier, D., et al. (2008). Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocolloids, 22, 1014–1032.

    Article  Google Scholar 

  • Havea, P., Singh, H., & Creamer, L. K. (2001). Characterization of heat-induced aggregates of β-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment. The Journal of Dairy Research, 68, 483–497.

    Article  CAS  Google Scholar 

  • Hoffman MAM & van Mill PJJM. (1997). Heat-induced aggregation of β-lactoglobulin: Role of the free thiol group and disulfide bonds. Journal of Agricultural and Food Chemistry, 45, 2942–2948.

    Article  Google Scholar 

  • Hoffman, M. A. M., Sala, G., Olieman, C., & de Kruif, K. (1997). Molecular mass distributions of heat-induced β-lactoglobulin aggregates. Journal of Agricultural and Food Chemistry, 45, 2949–2957.

    Article  Google Scholar 

  • Iametti, S., De Gregori, B., Vecchio, G., & Bonomi, F. (1996). Modifications occur at different structural levels during the heat denaturation of β-lactoglobulin. European Journal of Biochemistry, 237, 106–112.

    Article  CAS  Google Scholar 

  • Ibanoglu, E. (2005). Effect of hydrocolloids on the thermal denaturation of proteins. Food Chemistry, 90, 621–626.

    Article  CAS  Google Scholar 

  • Kato, A., Osako, Y., Matsudomi, N., & Kobayashi, K. (1983). Changes in the emulsifying and foaming properties of proteins during heat denaturation. Agricultural and Biological Chemistry, 47, 33–37.

    Article  CAS  Google Scholar 

  • Kim, D. A., Cornec, M., & Narsimhan, G. (2005). Effect of thermal treatment on interfacial properties of β-lactoglobulin. Journal of Colloid and Interface Science, 285, 100–109.

    Article  CAS  Google Scholar 

  • Law, A. J. R., & Leaver, J. (2000). Effect of pH on the thermal denaturation of whey proteins in milk. Journal of Agriculture and Food Chemistry, 48, 672–679.

    Article  CAS  Google Scholar 

  • Le Bon, C., Nicolai, T., & Durand, D. (1999). Growth and structure of aggregates of heat-denatured β-lactoglobulin. International Journal of Food Science & Technology, 34(5–6), 451–465.

    Article  Google Scholar 

  • Lyster, R. L. J. (1970). The denaturation of α-lactalbumin and β-lactoglobulin in heated milk. The Journal of Dairy Research, 37, 233–243.

    Article  CAS  Google Scholar 

  • Manderson, G. A., Hardman, M. J., & Creamer, L. K. (1999). Effect of heat treatment on bovine β-lactoglobulin A, B and C explored using thiol availability and fluorescence. Journal of Agriculture and Food Chemistry, 47, 3617–3627.

    Google Scholar 

  • Meza, B. E., Verdini, R. A., & Rubiolo, A. C. (2009). Viscoelastic behavior of heat-treated whey protein concentrates suspensions. Food Hydrocolloids, 23, 661–666.

    Article  CAS  Google Scholar 

  • Morr, C. V., & Ha, E. Y. W. (1993). Whey protein concentrate and isolates: Processing and functional properties. Critical Reviews in Food Science and Nutrition, 33, 431–476.

    Article  CAS  Google Scholar 

  • Odian, G. (2004). Principles of polymerization (4th ed., pp. 408–409). Hoboken: Wiley.

    Book  Google Scholar 

  • Pantaloni, D. (1964). E´tude de la transition R/S de la β-lactoglobuline par spectropolarimétrie et par spectrophotométrie de differences. Comptes Rendus Academic Science, 258, 5753–5756.

    CAS  Google Scholar 

  • Sava, N., van der Plancken, I., Claeys, W., & Hendrickx, M. (2005). The kinetics of heat-induced structural changes of β-lactoglobulin. Journal of Dairy Science, 88, 1646–1653.

    Article  CAS  Google Scholar 

  • Sawyer, L. (2003). β-Lactoglobulin. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced Dairy Chemistry—1: Proteins. 3rd ed., Part A (pp. 319–386). New York: Kluwer.

    Chapter  Google Scholar 

  • Schmitt, C., Bovay, C., Vuilliomenet, A. M., Rouvet, M., & Bovetto, L. (2010). Influence of protein and mineral composition on the formation of whey protein heat-induced micro gels. Food Hydrocolloids. doi:10.1016/j.foodhyd.2010.05.010.

    Google Scholar 

  • Schokker, E. P., Singh, H., & Creamer, L. K. (2000). Heat-induced aggregation of β-lactoglobulin A and B with α-lactalbumin. International Dairy Journal, 10, 843–853.

    Article  CAS  Google Scholar 

  • Shimada, K., & Cheftel, J. C. (1989). Sulfhydryl group/disulfide bond interchange reactions during heat induced gelation of whey protein isolate. Journal of Agriculture and Food Chemistry, 37, 161–168.

    Article  CAS  Google Scholar 

  • Simmons, M. J. H., Jayaraman, P., & Fryer, P. J. (2007). The effect of temperature and shear rate on the aggregation of whey proteins and its implications for milk fouling. Journal of Food Engineering, 79, 517–528.

    Article  CAS  Google Scholar 

  • Singh, H., & Flanagan, J. (2006). Milk proteins. In Y. H. Hui (Ed.), Handbook of Food Science, Technology, and Engineering (Vol. 1, pp. 26–31). New York: Taylor and Francis.

    Google Scholar 

  • Tanford, C., Bunville, L. G., & Nozaki, Y. (1959). The reversible transformation of β-lactoglobulin at pH 7.5. Journal of the American Chemical Society, 81, 4032–4036.

    Article  CAS  Google Scholar 

  • Walstra, P., & Jenness, R. (1984). Salts. In P. Walstra & R. Jenness (Eds.), Dairy Chemistry and Physics (pp. 42–57). New York: Wiley.

    Google Scholar 

  • Ye, A., & Taylor, S. (2009). Characterization of cold-set gels produced from heated emulsions stabilized by whey protein. International Dairy Journal, 19, 721–727.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by CNCSIS-UEFISCSU, project number PNII-IDEI 517/2008 (www.trasilact.ugal.ro).

The work of Alina Ardelean was supported by Project SOP HRD-EFICIENT 61445/2009.

Bioaliment Research Platform (www.bioaliment.ugal.ro) is also acknowledged for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Râpeanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stănciuc, N., Dumitraşcu, L., Ardelean, A. et al. A Kinetic Study on the Heat-Induced Changes of Whey Proteins Concentrate at Two pH Values. Food Bioprocess Technol 5, 2160–2171 (2012). https://doi.org/10.1007/s11947-011-0590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0590-y

Keywords

Navigation